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Abstract

High tropical species diversity is often attributed to evolutionary dynamics over long

timescales. It is possible, however, that latitudinal variation in diversification begins when

divergence occurs within species. Phylogeographic data capture this initial stage of diversifi-

cation in which populations become geographically isolated and begin to differentiate

genetically. There is limited understanding of the broader implications of intraspecific diver-

sification because comparative analyses have focused on species inhabiting and evolving

in restricted regions and environments. Here, we scale comparative phylogeography up to

the hemisphere level and examine whether the processes driving latitudinal differences in

species diversity are also evident within species. We collected genetic data for 210 New

World bird species distributed across a broad latitudinal gradient and estimated a suite of

metrics characterizing phylogeographic history. We found that lower latitude species had,

on average, greater phylogeographic diversity than higher latitude species and that intra-

specific diversity showed evidence of greater persistence in the tropics. Factors associated

with species ecologies, life histories, and habitats explained little of the variation in phylo-

geographic structure across the latitudinal gradient. Our results suggest that the latitudinal

gradient in species richness originates, at least partly, from population-level processes

within species and are consistent with hypotheses implicating age and environmental stabil-

ity in the formation of diversity gradients. Comparative phylogeographic analyses scaled up

to large geographic regions and hundreds of species can show connections between popu-

lation-level processes and broad-scale species-richness patterns.

Author summary

The causes of high tropical species diversity remain contentious and disputed. Recent

studies have shown that latitudinal differences in speciation and extinction rates give rise

to high tropical diversity. However, it is unclear if this gradient is the product of popula-

tion-level, species-level, or clade-level processes. Here, we used genetic, environmental,
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and morphological data from hundreds of bird species occurring in the Western Hemi-

sphere to evaluate patterns of within-species diversity. We found that tropical species have

greater intraspecific genetic variation, and this diversity persists longer than in temperate

species. These results indicate that biodiversity gradients can arise more rapidly than pre-

viously thought and that the processes governing these gradients operate on multiple evo-

lutionary timescales.

Introduction

Phylogeographic studies leverage spatial and genetic data to examine the earliest stages of spe-

ciation, illuminating how populations differentiate across a landscape [1]. Comparisons across

species show that the level of genetic structuring varies from deep phylogeographic breaks to

unstructured panmictic populations [2]. This among-species variation in the amount and

depth of phylogeographic structuring has been attributed to various factors, including differ-

ences in dispersal ability [3,4], habitat preferences [5], breeding phenology [6], life history

traits [7], and the amount of evolutionary time in the landscape [8,9]. Because comparative

phylogeographic studies usually examine species that occur within the same geographic region

and in similar environmental and historical settings, the generality of associations between

species traits and phylogeographic variation is largely unknown. Scaling phylogeography

beyond the analysis of codistributed species and expanding comparative tests to multiple geo-

graphic assemblages of species would provide insight into whether the origins of genetic diver-

sity link to large-scale biodiversity patterns.

The latitudinal gradient in species richness is one of the most ubiquitous ecological patterns

in nature [10]. Phylogenetic data suggest that higher tropical species richness is attributable to

a multitude of factors, including higher long-term diversification rates [11,12], niche conserva-

tism [13], and more time for speciation [e.g., 14]. Latitudinal variation in phylogeographic

structure is poorly understood, even though differences in diversification patterns among tem-

perate and tropical clades could begin accumulating within species. Genetic divergence among

populations has been shown to be higher in the tropics [15], but divergence patterns in subspe-

cies [16] and sister species [17,18] suggest that there is faster diversification in the temperate

zone. Processes that result in greater population differentiation and/or less extinction over

phylogeographic timescales would result in greater intraspecific diversity within a region, the

effects of which could persist to deeper phylogenetic scales. Assuming intraspecific genetic

diversity varies among regions [e.g., 19], comparative analysis of phylogeographic structure

between the temperate and tropical zones should provide insight into the formation of a more

general latitudinal biodiversity gradient.

Habitat, landscape heterogeneity, and species dispersal ability are expected to influence

phylogeographic structuring by determining how fragmented species distributions are and lev-

els of gene flow between populations. These interactions among populations, however, may

function differently across habitat types and regions. In tropical forests, higher available energy

[20] and increased niche specialization along elevational gradients [21] and vertical habitat

strata [22] are expected to lead to higher speciation rates. Greater climatic instability in tem-

perate habitats during Pleistocene glacial—interglacial cycles has been linked to dynamic spe-

cies histories of population expansion and contraction, higher extinction rates [23], and in

some cases higher speciation rates [e.g., 17]. Species ecologies that differ between habitats and

regions can also lead to differences in phylogeographic diversity. For example, genetic subdivi-

sion is often deeper in tropical species with lower dispersal abilities [4,7]. It is unclear if these
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traits have the same phylogeographic effect on temperate species, for which movements may

be determined by changing climatic conditions more than intrinsic dispersal ability. Another

possibility is that phylogeographic structuring may be random with respect to both the envi-

ronment and ecology, such that the accumulation of genetic variation within a species may be

due to its evolutionary persistence in the landscape [8]. The effects of environment, ecology,

and persistence on species phylogeography are not mutually exclusive and may mediate broad

patterns of intraspecific diversity among regions.

Here, we used hemisphere-scale intraspecific data from New World birds to test whether

phylogeographic diversity varies from the temperate region to the tropics. We compiled a

large multispecies dataset of mitochondrial DNA (mtDNA) with environmental, trait, and

morphological data for each species. The bird species included in this study inhabit various

ecoregions, including tropical lowland and montane rainforests, deserts, temperate deciduous

forests, and montane pine forests. We used a Bayesian coalescent model to quantify the degree

of phylogeographic structure from each species’ time-calibrated mtDNA gene tree. To test for

latitudinal biodiversity gradients below the species level, we asked whether or not the degree of

phylogeographic structure declined with increasing latitude. We additionally assessed and

accounted for the relative influence of a range of variables characterizing environmental pref-

erences, contemporary and historical environmental conditions, life history, morphology, and

range sizes (S1 Table) on phylogeographic diversity. Finally, we evaluated possible population-

level mechanisms for an intraspecific diversity gradient by assessing whether metrics of the

rates of formation and loss of phylogeographic structure in species are tied to latitude. By char-

acterizing broad-scale patterns of phylogeographic diversity and investigating their environ-

mental, ecological, historical, and population-level causes, we provide powerful insight into

how biodiversity patterns form at the early stages of diversification.

Results

An intraspecific latitudinal diversity gradient exists

We assembled mtDNA data from 17,573 individuals, representing 210 species, for which we

collected environmental data from 67,779 observational records and morphological data from

1,139 museum specimens. The proportion of species sampled compared to the total diversity

was higher in temperate North America versus tropical South America (Fig 1A), but the num-

ber of species sampled was higher in the tropics (Fig 1B). Species occurring in the highest lati-

tude areas, such as temperate South America, were underrepresented in our dataset. Genetic

sampling within species was poorest in areas shown in red (Fig 1C); for example, the northern

limits of species occurring in Canada are undersampled. Our sampling of foraging guilds (Fig

1D) and body sizes (Fig 1E) qualitatively reflected their relative diversities with respect to

unsampled species, except that very large birds are underrepresented in phylogeographic stud-

ies. To estimate phylogeographic structure, we required a metric that was comparable across

species with varying degrees of sampling. The multispecies coalescent provides a framework

for measuring genetic structure within species, and we used a Bayesian implementation dem-

onstrated to perform well with variable sampling [24]. We found, on average, that our focal

species (n = 210; S2 Table) included multiple genetic clusters (mean = 2.710; standard devia-

tion [SD] = 2.310; range: 1:17) that were geographically structured.

Using phylogenetic generalized least-squares (PGLS) analysis, we evaluated the association

between phylogeographic structure and latitude while accounting for phylogenetic noninde-

pendence. We used multivariate models to account for alternative explanatory variables char-

acterizing species ecologies, life histories, and habitats. The explanatory powers of the

multivariate models were compared using a version of the Akaike information criterion
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(AICc). The latitudinal midpoint of species’ distributions was a significant effect in the model,

after accounting for all other variables (S3 Table). Because the model also included the age of

each species, the latitudinal trend in phylogeographic structure is not merely attributable to

latitudinal variation in species ages (S3 Table). Decreasing phylogeographic structure with

latitude was more pronounced when we included species age based on stem age (ΔAICc =

16.059), the timing of divergence from the last common ancestor, as a covariate versus crown

age (ΔAICc = 3.163), the time when all haplotypes coalesce within a species. The ΔAICc shows

the change in the AICc score between the full model and a model excluding the predictor, with

a ΔAICc> 2 considered a significant factor in the model. The models also accounted for sam-

pling bias linked to the proportion of each species range sampled, which had a stronger effect

in the model using stem age (ΔAICc = 2.862) versus crown age (ΔAICc = 1.353). Heat maps

that reflect the phylogeographic structure across species occurring in each pixel provide a

visual evaluation of trends across regions (Fig 2A–2C). The mean (Fig 2B) and SD (Fig 2C) of

phylogeographic structure are higher in species occurring at lower latitudes in the tropics.

The gradient is robust to several types of bias

We assessed whether higher phylogeographic structure in tropical species was an artifact of

different sources of bias (Fig 3). Our PGLS analyses were robust to using an alternative taxon-

omy, examining passerines only (n = 178), excluding species that were outliers with respect to

phylogeographic structure (n = 199; excluding structure estimates greater than the 95%

Fig 1. Summary of ecological and geographical sampling of the species used in this study. Shown is the proportion of species

sampled with phylogeographic data out of the total diversity of terrestrial New World birds (A), species richness of those species that

were sampled in this study (B), and unsampled areas within each species’ distribution (C). Pie charts (D) show foraging guilds of

species sampled in this study versus unsampled species. Foraging guilds are as follows—A: Frugivore-Nectarivore, B: Insectivore,

C: Omnivore, D: Granivore-Herbivore, E: Carnivore-Piscivore. The box plots (E) show log body masses (g) of the species sampled

and unsampled in this study. The unsampled species represent all terrestrial New World birds. Shown are the first, second, and third

quartiles; the lines are the 95% confidence intervals, and the circles represent outliers. Underlying data for 1DE is from the EltonTraits

database [25].

https://doi.org/10.1371/journal.pbio.2001073.g001
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Fig 2. Species occurring in the tropics have more phylogeographic structure than those in the

temperate zone. Heat maps show the per-pixel value of the summed (A), mean (B), and standard deviation

(C) for phylogeographic structure across all species. Phylogeographic structure estimates are based on

genetic clusters, identified using coalescent modeling (0.9 posterior probability threshold). Warmer colors

denote higher values.

https://doi.org/10.1371/journal.pbio.2001073.g002
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quantile), and uncertainty in estimates of population structure or species age (Fig 3 bottom; S3

Table). To account for potential taxonomic biases, we compared our results using species cur-

rently recognized by the Checklist committees of the American Ornithological Society (AOS;

n = 210; S2 Table) to a second treatment consisting of more inclusive monophyletic groups

representing either single species or species complexes (hereafter “lumped” species; n = 179; S2

Table). Taxonomic uncertainty arises where two currently recognized species are allopatric;

thus, combining species complexes into single species should alleviate artifacts caused by

uneven taxonomic splitting across species. The inclusion of both taxonomic treatments

Fig 3. The phylogeographic diversity gradient in New Word birds is robust to several types of bias. In the top graph, the y-

axis shows the amount of phylogeographic structure (square root converted), and the x-axis shows the absolute latitudinal midpoint in

each species. Non-passerine and passerine species are denoted in rose and aqua, respectively. Phylogeographic structure

increases towards the equator (top graph). The stability of the association between phylogeographic structure and latitude is shown

with Akaike information criterion (AICc) weights, which were qualitatively similar across treatments assessing sources of potential

bias (bottom graph). On the bottom graph, the y-axis shows the AICc weight for a particular multivariate-phylogenetic generalized

least-squares (PGLS) model in which a variable was removed or all variables were included (Full Model). The thicker the bar for a

particular variable, the less influence removal of that variable had on model fit. The x-axis shows the different bias treatments.

Starting from the left, the column labeled “0.9” is the standard treatment using currently recognized species by the American

Ornithological Society (AOS), and “0.8” and “0.7” are more liberal thresholds for inferring the degree of phylogeographic structure in

each species. “Age High and Low” used the high and low of the 95% highest posterior density for species ages, respectively. We

excluded non-passerines and species that were outliers with respect to phylogeographic structure (greater than the 95% quantile) in

the “Passerines” and “Quantile” datasets, respectively. The “Lumped” dataset is an alternative taxonomy in which we combined

allopatric or parapatric populations and species that formed a monophyletic group. Our PGLS analyses were robust to using

alternative datasets to account for these different sources of bias. Underlying data can be found in S2 Table (top) and S3 Table

(bottom).

https://doi.org/10.1371/journal.pbio.2001073.g003
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allowed us to assess if any of our results were caused by latitudinal biases in the frequency of

paraphyletic species [26] or in species delimitation [27]. We found similar results in both tax-

onomies (Fig 3).

An alternative way to account for taxonomic bias, assuming that taxa that contain multiple

species are older, is to condition on species age in the multivariate models and assess whether

the correlation remains significant. We found that latitudinal midpoint still showed a negative

(β = −0.001) and significant (p< 0.00003) correlation with phylogeographic structure, even

when we corrected for species stem age. Additionally, we randomized the phylogeographic

structure value in each species to produce a null distribution and compared univariate models

examining latitude using randomized versus observed values. The association between latitude

and phylogeographic structure was significantly different than the null expectation (p = 0; S2

Fig; S3 Table). Even though our sensitivity analyses cannot exhaustively account for all poten-

tial biases in species limits, we show that latitudinal variation in phylogeographic structure was

robust to alternative taxonomies and species ages and significantly different from a null model.

Most variables poorly explain phylogeographic variation

Despite sampling birds in diverse environments and with varied ecologies, these traits were

often poor or inconsistent predictors of phylogeographic structure. From our measurements

of museum specimens, we compiled data on species with a wide range of wing shapes (hand-

wing index range: 4.873–64.327), body sizes (tarsus length range: 4.25–64.48 mm), and life his-

tory strategies, ranging from sedentary taxa to long-distance seasonal migrants (max = 7,833

km; S2 Table). We found that proxies for dispersal ability (hand-wing index), body sizes (tar-

sus length), and migratory distances were not significantly correlated with phylogeographic

structure (S3 Table). Mean elevational preference, overall landscape ruggedness, and changes

in climate since the Last Glacial Maximum were also not generally significant effects in our

models, but many of the contemporary environmental variables that covary with latitude were

(S3 Table). At the macroscale, phylogeographic diversity primarily varied along latitude, irre-

spective of the inclusion of other variables.

Mechanisms potentially responsible for higher phylogeographic diversity

in the tropics

Three primary processes might be responsible for higher phylogeographic diversity in the

tropics: a higher rate of splitting of phylogeographic clusters, lower rate of extinction of phylo-

geographic clusters, or more time for phylogeographic structure to accrue in tropical species.

Although most phylogeographic trees contain too few lineages to jointly estimate splitting and

extinction rates within each species, they do contain information on the relative rate at which

phylogeographic structure was formed and lost [28] that can be used to compare broad pat-

terns across species. Diversification processes are more challenging to estimate from phylogeo-

graphic data of extant species than are the indices of phylogeographic diversity examined

above, but latitudinal variation in these processes is of broad interest, and we address each pro-

cess here.

Greater age of tropical species. Although latitude was a significant predictor of phylogeo-

graphic structure, after controlling for species age (see above), latitudinal differences in species

age are still partly responsible for the association. Species age was strongly associated with lati-

tude (crown age model; Adjusted R2: 0.406; p< 0.001), and heat maps of mean crown and

stem ages show pronounced differences along the latitudinal gradient in which tropical species

were older than those in the temperate region (Fig 4A & 4B; S1A & S1B Fig). We also found

that species age was a strong predictor of phylogeographic structure across the various models

Macrophylogeography of new world birds
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we evaluated (stem age: ΔAICc: 27.488; crown age: ΔAICc: 69.072; S3 Table). These models

explained approximately 35% to 47% (Adjusted R2: 0.349/0.467) of the variation in phylogeo-

graphic structure across species. The positive association between species age and amount of

phylogeographic structure was robust to the threshold used to delimit the number of phylo-

geographic clusters, the uncertainty in species age, and alternative taxonomies (S3 Table) and

was significantly different from a null model (p = 0; S2 Fig). In summary, we found that tropi-

cal species as currently delimited are older than temperate species, and older species have

higher phylogeographic structure than younger species.

Higher tropical splitting rate. We estimated the rate at which phylogeographic structure

formed, or the splitting rate, by fitting species age and the number of phylogeographic clusters

within species to a pure-birth model (see Materials and methods). We found inconsistent sup-

port for faster splitting rates in tropical species. Heat maps show some evidence of higher

mean splitting rates in tropical species in the estimates based on the stem age but not the

crown age (Fig 4C & 4D; SD is shown in S1C & S1D Fig). Stem age, however, is less informa-

tive than crown age for inference of splitting rates [29] and may better reflect the time during

which a lineage has persisted (see below) than the time over which it has diversified. A similar

pattern was recovered with the multivariate models using splitting rates based on stem age

(adjusted R2: 0.0746; p = 0.002; S3 Table), in contrast to those estimated from crown age

(adjusted R2: 0.032; p = 0.066; S3 Table). Inconclusive support for latitudinal variation in split-

ting rates was further observed with comparisons of the empirical data to null models. Only

Fig 4. Heat maps show older tropical species, inconsistent support for higher splitting rates in the tropics, and greater

lineage loss in temperate species. Shown are mean crown (A) and stem (B) ages in units of millions of years ago (Mya), mean

crown (C) and stem (D) splitting rates, and lineage loss (E). Crown age is the time when extant mitochondrial DNA (mtDNA)

haplotypes within each species coalesce. Stem age is the time when the mtDNA haplotypes coalesce with the species’ last common

ancestor. Splitting rates were estimated using a pure-birth model. Lineage loss is a relative index, gauging the loss of lineages as

determined from the standardized length of the stem branch (see Materials and methods). Warmer colors denote higher values.

https://doi.org/10.1371/journal.pbio.2001073.g004
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stem splitting rates were significantly different than randomly produced values (stem splitting

rates p = 0.04, S3 Fig; crown splitting rates p = 0.12, S4 Fig). The model results also varied

among the alternative taxonomic datasets, as none of the splitting rate models using the

lumped dataset were significant. Collectively, these data and analyses do not provide strong

support that higher rates of splitting among tropical populations produced the observed latitu-

dinal phylogeographic diversity gradient.

Lower tropical lineage loss rate. We calculated a proxy for lineage loss along the stem

branch by measuring the standardized difference between stem and crown age (see Materials

and methods). Long stem branches are expected in situations with high extinction rates, all

else being equal [28]. Using this metric, we found that more lineage loss has occurred along

the stem branch within temperate species than within tropical species (Fig 4E; SD Fig 1E). We

found that lineage loss increased with latitude (β = 0.005; p< 0.00001; S3 Table), and that lati-

tude was a significant predictor in the multivariate model (adjusted R2: 0.147; ΔAICc: 15.276;

S3 Table) and was significantly different than a null model (p = 0; S5 Fig; S3 Table). Impor-

tantly, this metric should not be biased by taxonomy, as it is a standardized measure of branch

length between two nodes. Higher lineage loss in temperate species was also observed in mod-

els that used climatic variables (the first principal component [PC1]) and net primary produc-

tivity, which were significant effects (ΔAICc: 14.225/7.415, respectively; S3 Table). Mirroring

patterns of phylogeographic structure, tropical species show a broader range in the lineage loss

index than temperate species, whose uniformly high lineage loss rates may underlie the latitu-

dinal gradient in phylogeographic diversity.

Discussion

Our comparative phylogeographic analysis of hundreds of New World bird species demon-

strated that intraspecific genetic variation exhibits a pronounced latitudinal gradient. In com-

parison to temperate species, we found that tropical species are older and have accumulated

and maintained more phylogeographic structure. These patterns are remarkably consistent

with studies based on species-level data that show higher species richness [10], older taxa [30],

and lower extinction in the tropics [11,31,32]. Although phylogeographic structure may not

persist into the deeper evolutionary timescales examined in phylogenetic studies of species

richness [33,34], the concordant patterns across timescales suggest that similar processes may

be responsible in both cases. Overall, our results demonstrate that latitudinal diversity gradi-

ents are evident at shallow evolutionary timescales and that comparative phylogeographic data

are useful for examining patterns of diversity at large geographic scales.

Higher climatic and environmental stability in the tropics has been implicated as a mecha-

nism producing the latitudinal biodiversity gradient [10,35]. Pleistocene glacial—interglacial

cycles had a global effect on species distributions and habitats [23], but these environmental

effects were particularly profound in northern latitudes, where large ice sheets covered much

of the terrain [36]. Our estimate of lineage loss, a standardized metric of stem branch length,

showed the predicted latitudinal pattern of higher extinction in the temperate zone, where cli-

matic conditions were most volatile. These findings reiterate that the lower genetic diversity in

temperate species is due to long-term historical processes and not to human-modified changes

to the landscape, as suggested by recent work [19]. Although long stem branches do not pro-

vide information on the magnitude of the number of lineages lost over time, their lengths are

nevertheless indicative of relative levels of extinction and pruning [37,38]. Our results are con-

sistent with studies directly estimating extinction at phylogenetic scales and among sister spe-

cies, which found higher extinction rates in temperate birds [17,31]. Long stem branches in

high-latitude species could alternatively reflect a failure of populations within northern species

Macrophylogeography of new world birds
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to diversify until recently, but this explanation seems unlikely, given the lack of an obvious bio-

logical reason (e.g., long-term environmental stability) for historical evolutionary stasis. A

potential means by which temperate species could respond to both historical and seasonal cli-

matic change is through long-distance migration, which is predicted to facilitate diversification

[39]. However, our measurement of migration distance was not correlated with levels of phylo-

geographic structure. Low phylogeographic structure and high lineage loss, irrespective of dis-

persal ability or migratory behavior, are consistent with climatic instability, leaving a strong

signature of lowered evolutionary persistence within temperate species.

We identified species age as another important mediator of the latitudinal gradient in phy-

logeographic structure. Previous work on birds occurring in lowland Neotropical rainforests

suggested that this age—diversity association is linked to species ecologies that influence evolu-

tionary persistence in the landscape, with more sedentary and poorly-dispersing species being

older and containing deeper phylogeographic structure across their ranges [8]. Reduced dis-

persal ability has been linked more directly to divergence in regional studies focused on low-

land Neotropical [4] and South Pacific bird faunas [40]. Our study includes a more exhaustive

survey of Neotropical birds in terms of range-wide sampling and number of species, and we

did indeed identify many tropical species with low dispersal abilities and high phylogeographic

structuring. However, there was substantial noise around this relationship, and dispersal abil-

ity did not emerge as an important predictor of phylogeographic structure, after accounting

for other factors. In addition, our novel comparisons of species across biomes show uniformly

lower phylogeographic structure in temperate species, irrespective of dispersal ability. The lack

of an association between dispersal ability as estimated from hand-wing index and phylogeo-

graphic structuring may be an indication that species ecologies do not have the same influence

on structuring populations in the temperate region as in the tropics, that temperate species

have more generalized niches that predispose them to dispersing [41], or that long-term cli-

matic instability at high latitudes is the predominant factor that shapes levels of intraspecific

genetic variation.

The strong association between species age and phylogeographic structure in our dataset

reflects a clear historical influence on intraspecific variation, but other aspects of species his-

tory (e.g., ancestral origin) were not accounted for in our analysis. The historical biogeography

of New World birds has focused on particular regions [e.g., 42] and macroscales [e.g., 43], but

the colonization times in each region are not known for many lineages. Resolving when species

colonized regions is necessary to clarify if diversity is attributable to how long a lineage has

been in a region [e.g., 14] or if diversification is linked to expansion into novel environments

[e.g., 44,45]. The impacts of long-term interactions among species on phylogeography are not

known, but the evolution of a species’ phylogeographic history may be influenced by codistrib-

uted species through ecological interactions. In the tropical mountains of the Andes, eleva-

tional replacement of closely related taxa has been linked to intraspecific competition during

the history of populations [46]. If the evolutionary outcome of ecological processes varies

between the temperate zone and the tropics, then species interactions could play a role in shap-

ing the latitudinal phylogeographic diversity gradient.

Although existing studies have found broadly concordant latitudinal patterns in diversity

and evidence for greater evolutionary stability in the tropics, a general explanation for the link

between diversification processes and latitudinal patterns has proven elusive. Studies have var-

iously found that speciation or origination rates in lineages inhabiting the tropics are higher,

lower, or similar to those of lineages in the temperate zone [17,33,47,48]. Differences obtained

across these studies may be partially attributable to sampling different phylogenetic depths and

scales [11], which range from sister species [e.g., 17], to taxonomic clades [e.g., 31], and com-

plete phylogenies [48]. Differences in the temporal scale of studies may highlight the different
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processes that are at work over different timescales (e.g., divergence versus persistence) but

may also reflect differences in our ability to model processes, such as extinction, in different

types of data. At shallow timescales, we did not find evidence for accelerated intraspecific

diversification in high latitudes, as observed in rates estimated from sister species divergence

times [17] and subspecific diversity [16]. Reconciling these different stories will require not

only improved data and models but also integrating the insights gained from different types of

data collected over varying timescales.

Comparative analyses, such as ours, are reliant on accurately delimited species. Avian tax-

onomy is complicated by several sources of bias, including greater efforts in describing diver-

sity in the temperate zone, a lack of sampling to clearly delimit taxa in the tropics, and/or

inconsistent criteria for species delimitation. A major perceived bias is that tropical species

harbor multiple species, whereas temperate species have been finely split [27,49]. We evaluated

this issue by accounting for species age in our analyses and by using an alternative lumped tax-

onomy. We found the latitudinal phylogeographic diversity gradient to be robust to taxonomic

treatment and the age of recognized species. However, if all phylogenetic species were elevated

to full species, as some have proposed [49], species may no longer contain sufficient variation

for comparative studies of intraspecific diversity. Under such a treatment, the patterns we

observed in our data would reflect trends in recent speciation rather than intraspecific diver-

sity, but they would still attest to the fact that broad patterns in diversity can form over very

shallow timescales. We suggest that, when done carefully, comparative studies such as ours

capture important biological patterns and processes, irrespective of taxonomic considerations.

The accuracy of phylogeographic metrics at capturing genetic differentiation depends on

the genetic markers employed and the density of sampling. We focused on a coarse-scale met-

ric that reflected deep phylogeographic structure (sensu [2]) because the degree of population-

level sampling varied across species, and our objective was to assess broad comparative pat-

terns. Ecological effects on genetic differentiation may be more pronounced at the allelic level

and may require large SNP-based datasets with dense sampling of individuals to detect associa-

tions. Alternatively, our proxies for species ecology may not accurately reflect the ecological

processes that influence genetic variation. Another confounding factor in our estimates was

the impact of coalescent stochasticity on mtDNA gene trees. However, it is unlikely that the

significant relationships we recovered were artifacts of coalescent stochasticity because we

sampled a large number of species, our estimates of phylogeographic structure were conserva-

tive, and we evaluated our results against null models. Our species ages are presumably overes-

timates because the method we employed did not take into account species tree—gene tree

discordance and ancestral effective population sizes [50]. We do not expect this estimation

error to be highly biased across species differing in phylogeographic structure. These limita-

tions can be improved with genome-scale data and dense sampling, but obtaining large and

comparable multilocus datasets for hundreds of species will likely not be possible for years to

come. Furthermore, although genome-scale estimates of phylogeographic metrics will improve

parameter estimation [51], explaining the causes of among-species phylogeographic variation

will remain a challenge.

Our study focused on data from a relatively well-known and well-sampled group of organ-

isms, New World birds. Despite that, we found assembling a dataset of this size and complete-

ness to be challenging. Among the least straightforward aspects of assembling these data were

filtering erroneous data (e.g., taxon misidentification) and successfully extracting data and

metadata from previous publications. As datasets grow, it will become particularly challenging

to identify high-quality data. We opted for both manually checking data and trees with pub-

lished results, along with automated processing that produced plots for additional data inspec-

tion. There may well be more signal in our data than we could extract in the broad analyses
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presented here, and it could provide further insight into the processes responsible for the

observed latitudinal phylogeographic diversity gradient. For example, population expansions

have been important in northern temperate species [52], but we did not examine evidence of

genetic bottlenecks, extirpation, and selective sweeps. Mechanisms directly responsible for the

older age of tropical species will also require further investigation to determine if population

persistence is due to more stable climates, tropical species colonizing areas earlier than the

temperate zone, and/or additional taxonomic bias. More sophisticated models, the addition of

spatially explicit statistics of genetic diversity, and larger multilocus datasets could provide

higher resolution to these processes and perhaps reveal additional predictors of broad-scale

patterns of diversity.

In conclusion, phylogeographic data play a central role in elucidating the spatial and tem-

poral dynamics of shallow evolutionary processes, and our study demonstrates that these pro-

cesses are linked to broader biodiversity patterns. Species vary considerably in intraspecific

diversity and the accumulation of this variability is time-dependent. Tropical species are older

and harbor more phylogeographic structure, whereas temperate species are younger and have

signatures of lineage loss, suggestive of pervasive impacts of environmental instability at high

latitudes. Differential accumulation and persistence between tropical and temperate taxa may

be correlated across phylogenetic scales, and this may produce gradients in both latitudinal

phylogeographic structure and species diversity.

Materials and methods

Data collection

New World bird species are among the best-studied faunas at the phylogeographic level in

sampling and diversity, and they occur across a broad environmental gradient that allows for

comparative analysis at large spatial scales. We identified candidate phylogeographic datasets

(S2 Table) and downloaded mtDNA sequence data from GenBank (S1 Data). We chose

mtDNA because nuclear DNA was not available for the majority of species in our study. To

standardize our collection approach and optimize comparability among species, we selected

species for which geographical sampling was available and omitted populations/species that

occurred on Caribbean islands or in the Old World, to focus our analysis on mainland North

and South America. To obtain units for comparative analyses, we delineated species using the

taxonomy of the North American (NACC) and South American (SACC) Checklist committees

of the AOS [53,54]. We used two taxonomic delimitation treatments to account for biases

caused by lumping and splitting of species. Our first treatment consisted of single species rec-

ognized by the AOS (n = 210; mean number individuals per species = 83.681; SD = 88.004).

Some species had paraphyletic mtDNA gene trees, which is most likely attributed to taxonomic

error [26]. These currently recognized biological species may not represent natural groups,

particularly in tropical species [27], so we used a second taxonomic treatment in which closely

related species were combined into species complexes and analyzed together. We combined all

allopatric or parapatric populations and species that formed a monophyletic group for which

we had range-wide genetic sampling. This alternative taxonomic treatment is referred to as the

lumped dataset (n = 179; mean number individuals per species = 100.201; SD = 95.553).

Estimating and visualizing phylogeographic variation

We estimated mtDNA gene trees for each species using BEAST v.1.7.5 [55]. Because the AOS

species were nested within the lumped species, we built gene trees using the lumped data and

extracted relevant values for each taxonomic treatment. We used published substitution

rates to calibrate the mtDNA gene trees because there were no appropriate fossils. For the
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cytochrome b (cyt b) and cytochrome oxidase subunits I and II (COI and COII) genes, we

used 0.0105 substitutions/site/million yr (s/s/my), a rate estimated for cyt b [56]. For the

NADH dehydrogenase subunits II, III, and VI (ND2, ND3, ND6) and for ATPase6&8 genes,

we used 0.0125 s/s/my, as estimated for ND2 [42]. Comparative analysis of whole mitochon-

drial genomes show that COI and COII evolve at a similar rate as cyt b, and that ND3 and

ND6 evolve at a similar rate as ND2 [57]. Estimated rates of evolution for the control region

are highly variable, ranging from 2% to 20% sequence divergence per million yr [58,59].

Because of the uncertainty surrounding the substitution rate of the control region, we opted

for a conservative rate (0.0125 s/s/my) that was similar to that of the other, faster evolving

mtDNA loci. For the uncorrelated lognormal relaxed clock mean (ucld.mean) parameter, we

specified a lognormal distribution on the prior with the mean set to the above-mentioned

mutation rates and a SD of 0.1. This dating approach allowed us to account for rate heteroge-

neity among genes and branches and for uncertainty around mean estimates. We used a coa-

lescent-constant-size tree prior and the best-fit nucleotide substitution model as determined in

MEGA6 [60], and we specified lognormal distributions on substitution model prior distribu-

tions. We ran each analysis for 50 million generations, sampling every 2,500 generations, per-

formed multiple independent runs for validation, and assessed MCMC convergence and

burn-in by examining ESS values and likelihood plots in Tracer v.1.5 [61]. For some datasets

that did not achieve Effective Sample Size (ESS) values> 200 after 50 million generations, we

added up to 50 million additional generations to ensure that the results were stable. For each

focal species, we included the sister taxon (based on prior phylogenetic work) and extracted

the mean and the 95% highest posterior density for stem (the time when the mtDNA haplo-

types coalesce with the species’ last common ancestor) and crown (the time when all haplo-

types in the species coalesce) age estimates for each species in units of millions of years ago

(Mya). Some sister taxa did not share the same loci, and the resulting age estimates were incon-

gruent, particularly for the stem age. To account for this discrepancy, when the data were

available, we built multispecies alignments and ran BEAST analyses to obtain stem ages for

multiple closely related taxa from a single tree. Mean stem (t = −2.72; SD = 2.70; p = 0.007)

and crown ages (t = −2.51; SD = 1.66; p = 0.012) were older in the lumped dataset (stem age:

mean = 4.81 Mya; SD = 2.95; crown age: mean = 2.23 Mya; SD = 1.78) than the dataset using

currently recognized species (stem age: mean = 4.07 Mya; SD = 2.57; crown age: mean = 1.802

Mya; SD = 1.550).

Phylogeographic structure can be estimated via numerous means, including population

genetic summary statistics [e.g., 62], assignment tests [e.g., 63] and tree-based approaches [e.g.,

64]. For our study, we required a phylogeographic metric that could be estimated and com-

pared across all species in our dataset that vary in terms of sampling. The multispecies coales-

cent provides an appropriate framework for delimiting genetic structure within species [65].

We used a Bayesian implementation of the General Mixed Yule Coalescent model (bGMYC)

[24]. This model calculates the number of putative genetic species in a phylogeny by estimating

the number of clusters in which the gene tree reflects intraspecific coalescent processes rather

than interspecific processes. The bGMYC model provides a posterior probability that two tips

in the phylogeny belong to the same genetic cluster, which can be used with a probability

threshold to determine the number of clusters. We used the maximum clade credibility tree

for each lumped species from BEAST for the bGMYC runs. We ran bGMYC for 250,000

generations using the single.phy function in R [66] and discarded the first 15,000 generations

as burn-in. We ran each analysis multiple times for validation, and we assessed MCMC

diagnostics by examining likelihood plots. We recorded the number of clusters per species

using three different posterior probability thresholds (0.9, 0.8, and 0.7) to account for the

uncertainty in delimited clusters. We recognize that finer-scale phylogeographic structure
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(e.g., significant FST values) was present in some species and that the approach we imple-

mented cannot accommodate this level of genetic variation. Given this limitation, there may

be interactions between species traits and genetic structuring that we lack sufficient resolution

to infer. We found the mean number of phylogeographic units in a species was, as expected,

significantly (t = −2.42; SD = 2.61; p = 0.016) higher in the lumped dataset (mean = 3.35;

SD = 2.92) than the dataset using currently recognized AOS species (mean = 2.71; SD = 2.31).

We calculated a phylogeographic splitting rate under a pure-birth model, using the formula

for stem age (equation 6) from Magallón and Sanderson [67] and the code in the R package

laser [68]. We elected to not use a more complex model that estimates speciation and extinc-

tion rates from branching times because of the overall low number of nodes in the gene trees

and their shallow depths. For example, in the dataset using currently recognized species (AOS

species), the average number of phylogeographic clusters was less than three, with a mean age

of less than 2 Mya. The Magallón and Sanderson [67] formula for diversification rates esti-

mated from stem age assumes a starting diversity of one lineage, and the crown age formula

assumes a starting diversity of two. There was no a priori reason to assume the starting number

of phylogeographic units was two in a species, so we specified a starting diversity of one for the

phylogeographic splitting rates estimated from both stem and crown ages. A comparison

between the lumped dataset and the dataset using currently recognized AOS species showed

that the splitting rates estimated from stem age were more similar (t = −1.23; SD = 0.250;

p = 0.22; lumped stem rate: mean = 0.253; SD = 0.230; AOS stem rate: mean = 0.221; SD =

0.267) than the rates estimated from crown age (t = −1.82; SD = 0.641; p = 0.069; lumped

crown rate: mean = 0.615; SD = 0.708; AOS crown rate: mean = 0.496; SD = 0.578).

In addition to calculating the degree of phylogeographic structure and splitting rate, we also

calculated a stem branch index that served as a proxy for lineage loss in each species. We esti-

mated this index by taking the difference between stem and crown age and standardizing the

value by the stem age (Lineage Loss = [Stem Age−Crown Age]/Stem Age). We used mean and

the 95% high and low values from highest posterior density to independently calculate lineage

loss. The pruning of lineages by extinction will increase the stem branch index, but a failure to

diversify could also leave a similar signature. To distinguish between these two processes, we

used a mean branch length index (number of phylogeographic clusters/crown age) within the

crown clade of each species as a reference for how long it takes diversification to begin, assum-

ing that speciation occurred at a constant rate. Crown group branch length indices that are

longer than stem branches could indicate that there has not been enough time for diversifica-

tion to occur. We found that 15.2% of the species had crown group branch length indices lon-

ger than the stem branch lengths, which suggests these species may not have had enough time

to diversity. However, phylogenetic generalized least-squares analysis (method details dis-

cussed below) recovered no strong latitudinal trends in the difference between these branch

lengths (AOS species dataset: adjusted R2: −0.004; F-statistic = 0.269; p = 0.604; Lumped data-

set: adjusted R2: −0.004; F-statistic = 0.242; p = 0.6234). The lack of a strong correlation

between crown group branch length indices and stem branch lengths suggests that there is not

a latitudinal bias in tropical or temperate species having less time to diversify.

We visualized phylogeographic data by projecting various metrics obtained from genetic

data and our sampling strategy onto the 2-D plots of the New World. We downloaded digital

range maps [69,70] and in ArcGIS 10.3 (ESRI Inc., Redlands, CA) converted breeding ranges

to rasters with a cell size of 0.1 and then reclassified each raster cell in which the species was

present to its number of phylogeographic clusters, splitting rate based on crown and stem age,

lineage loss, species age, and to one to represent where the species occurred for the species

richness map. All functions used to make heat maps were done in ArcGIS, and the processes

described below were automated by using Python scripts with ArcGIS functions. We used the
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Cell Statistics function in Spatial Analysis Tools to summarize across the species’ range maps

and to generate per-cell values for mean, SD, and/or sum for the above listed variables. For the

Cell Statistics function settings, we set the geographical extent and mask to mainland North

and South America.

We also produced maps that visualize the proportion of total species sampled and the extent

of sampling across each species range. We downloaded a global species-richness map of breed-

ing birds constructed from the same digital range maps [69,70] used in our analyses, and esti-

mated the proportion of species sampled per cell (Fig 1A) by dividing our species sampling

map (Fig 1B) by a global species-richness layer [71] in Raster Calculator. To visualize sampling

bias by producing sampling polygons (Fig 1C), we built sampling polygons for each species by

obtaining latitude/longitude coordinates, converting coordinates to a shapefile (Split by Attri-

bute add-in), converting the shapefile into a rectangle (Minimum Bounding Geometry func-

tion), and then clipping the rectangle to fall within each species range map (Clip function). We

then produced polygons of unsampled areas by using the Erase function to identify the area in

each species range not included in the sampling polygons. Sampling polygons were based on

ten latitude-longitude coordinates that were compiled for each species from published records

or georeferenced using descriptions of the sampling localities. For the lumped dataset, some

lineages within the lumped species had fewer than ten samples. All points are plotted in S6 Fig

Despite the large uncertainty surrounding some of these points, the coordinates, overall, pro-

vide coarse-scale resolution to how much of each species range was sampled. We summed the

unsampled polygons (Cell Statistics function) and produced a heat map that shows areas that

were undersampled (Fig 1C). We performed additional diagnostics on the association between

the proportion of each species ranged sampled and phylogeographic structure (0.9 posterior

probability threshold), range size, absolute latitudinal midpoint, and elevational preference (S7

Fig). Regression analyses indicated that there was only a significant association between the

proportion of each species range sampled and phylogeographic structure (Adjusted R2: 0.059,

p = 0.0002), but based on the other three plots, this bias was not associated with range size,

absolute latitudinal midpoint, or elevational preference (S7 Fig). Finally, all maps were scaled

to 110,000 km cells, to account for uncertainty in species range maps [72].

Environmental data

We measured the environmental space each species inhabits by extracting precipitation, cli-

mate, and net primary productivity data from observational records. We also extracted data

from layers measuring the difference between present-day and Last Glacial Maximum climatic

conditions. Our objective was to compare phylogeographic metrics in species that inhabit

more seasonal environments in the temperate regions with those that occur in less seasonal

tropical environments. To do this, we used climatic layers that averaged across the annual

cycle. These climatic data were not used to characterize the niches of species because some of

the taxa (n = 52) in our dataset were migratory. Instead, the climatic data capture broad-scale

habitat preferences (e.g., temperate broadleaf forests). We gathered 67,779 georeferenced

observational records, representing all study taxa (mean = 83.2 records/species’ SD = 41.48;

min/max = 1:147; S4 Table). We obtained records from eBird (May 2013 release), a real-time

record of species distributions and abundances collected by amateur and professional orni-

thologists [73]. Prior to incorporation into the eBird database, all submitted observations are

peer-reviewed by regional experts. Each record includes the start time, duration of data collec-

tion, and geographic distance covered. To minimize georeferencing inaccuracy while maxi-

mizing the number of localities per species, we included observations from all checklists that

were less than 6 hr in duration and less than 5 km in distance traveled. For each species, we
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removed all duplicated localities and randomly selected 1000 records to which we applied a

thinning algorithm such that no localities occurred within 1 km of each other, approximately

the resolution of the climatic data grid cells. We further verified observational records against

distributional maps [69,70].

For each locality record, we extracted elevation and 19 current climatic variables from the

WorldClim database at a spatial resolution of 2.5 arc-seconds [74]. We also extracted net pri-

mary productivity for each record [75]. For each species, we estimated the range of climatic

conditions inhabited by calculating the difference between the 95% high and low quantiles of

each layer. The 95% range of climatic conditions acts as a proxy for breadth of habitat across

a species range. We also incorporated climatic stability since the Last Glacial Maximum by

measuring the per-cell difference between the 19 contemporary climatic layers and the corre-

sponding paleoclimatic layers (MIROC: Model for Interdisciplinary Research on Climate)

using the cell statistics function in Spatial Analysis Tools in ArcGIS. Using the eBird observa-

tional records, we extracted the cell values from each of these climatic stability layers. To

reduce the dimensionality of the climatic niche estimates, we conducted a principal compo-

nents analysis of the contemporary climatic variables, climatic stability variables, and eleva-

tion using the prccomp function in R [66]. We used the Kaiser Criterion (Eigenvalues greater

than one) to reduce the number of components, and we retained principal components one

through four. We calculated mean and standard error for the principal components for each

species. For downstream analyses, we used either the first principal component (PC1), which

explained 49% of the climatic variation across species (S5 Table), or a combination of annual

mean temperature (BIO1), seasonality temperature (BIO4), annual mean precipitation

(BIO12), and precipitation seasonality (BIO15).

For each currently recognized species, we determined the range size, maximum and mini-

mum latitude, latitudinal range, landscape ruggedness, and midpoint of occurrence using digi-

tal range maps [69,70]. We projected the range map for each species with a lambert azimuthal

equal area projection. All of the spatial variables we collected were from the resident distribu-

tion of each species or, in the case of migratory species, the breeding distribution. We esti-

mated the area of each range and sampling polygon in km2 and calculated the proportion of

range sampled by dividing the sampling polygon area by the range size. For migratory species,

we calculated migratory distance as the difference between the breeding and wintering latitu-

dinal midpoints of each species. For sedentary species, we specified migratory distance as zero.

For species in the lumped dataset that consisted of more than one currently recognized species,

we merged the range maps of these species and calculated the same metrics as above. We per-

formed projections and calculations using the R packages maptools [76], raster [77], and rgdal

[78]. To measure the topographic variability across species ranges, we used a modified Melton

index [79]—(Elevationmax−Elevationmin)/log (range size)—that included a log-converted

range size instead of a square root conversion, in order to account for the large variance in

range sizes across species. We generated 250 random points per polygon in each species distri-

bution, and we extracted the elevation at each point to estimate maximum and minimum

elevation.

Morphological data

We recorded wing length (WL), secondary length (SL), and tarsus length from vouchered

specimens deposited at the American Museum of Natural History and the Museum of Natural

Science at Louisiana State University (S6 Table). We measured five male specimens in adult

plumage per species, and for migratory species, we only included individuals collected during

breeding months. We selected males because females may show greater variation in mass
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during the breeding season than males [80]. The shape of a bird’s wing influences its flight

capabilities and serves as a proxy for dispersal ability. Birds with long, narrow wings are more

capable of long-distance flight than species with rounder, short wings [81]. We calculated a

proxy for dispersal ability using the wing measurements (hand-wing index = 100 x (WL − SL)/

SL), a metric that is positively correlated with dispersal ability [82]. We used tarsus length as a

proxy for body size [83], as these are positively correlated for most species in our dataset with

the exception of parrots (Order: Psittaciformes), which have relatively small tarsi given their

body size.

Comparative analyses

The biogeographical distributions of birds, including the species in our dataset, are nonran-

dom, with entire clades distributed only in the temperate or the tropical region. To account for

this potential phylogenetic effect on patterns of latitudinal variation, as well as uneven geo-

graphical sampling among different groups of birds and the nonindependence of species trait

data, we used PGLS [83] analysis. We tested whether variables were significantly correlated

with different metrics of phylogeographic variation (phylogeographic structure, splitting rates,

and lineage loss) by fitting data to a condensed set of multivariate models. The purpose of the

multivariate modeling was to determine how much of the variation in the phylogeographic

metrics could be explained by the predictor variables and to determine the relative importance

of each of the variables.

We independently examined four classes of response variables reflecting the phylogeo-

graphic history of species from the AOS (n = 210) and lumped (n = 179) datasets: (1) the

degree of phylogeographic structuring within species, as determined by the number of

bGMYC species clusters; (2) species age, as determined by crown and stem ages; (3) the rate at

which diversification occurs within species or splitting rate, as determined by the phylogeo-

graphic diversification rate estimated from stem and crown species ages; and (4) lineage loss,

as determined by the standardized length of time between the stem and crown nodes. To

account for uncertainty in parameter estimates, we independently modeled metrics (phylogeo-

graphic structure and splitting rates) using three clustering threshold values (0.9, 0.8, 0.7). We

treated predictor variables as fixed effects in the models. To reduce the residual variance in the

models we square root converted the following variables in the PGLS analysis—number of

phylogeographic units, species age, range size, migratory distance, hand-wing index, and sam-

ple size. To account for the phylogenetic nonindependence of the species trait data, we used

the Jetz et al. [48] tree, built using the Hackett et al. [85] phylogeny as a backbone. We down-

loaded 1,000 trees from birdtree.org (Hackett All Species option; January 2017), and we built a

maximum clade credibility (MCC) tree using the pseudoposterior distribution of trees in Tree

Annotator [55]. Four species in our dataset represent recent taxonomic changes and were not

included in the Jetz et al. [48] tree. For these taxa, we grafted species onto the phylogeny to

their sister taxon using the add.tip function in the ape package [86] in R [66]. All models are

available in S3 Table. We used 100 subsampled trees for the multivariate models and the MCC

tree for univariate tests.

Using the PGLS function in the R [66] caper package [84], we fit data to multivariate mod-

els. This function models phylogenetic signal in the data using the parameters lambda, kappa,

and delta. We optimized the value for lambda using maximum likelihood, and we kept the

default values for kappa (1.0) and delta (1.0). We assessed whether the empirical response vari-

ables were significantly different from a random sample of values generated using the same

mean, SD, and distribution type of the empirical data. For all response variables, we used trun-

cated lognormal distributions, except for lineage loss, for which we used a truncated normal

Macrophylogeography of new world birds

PLOS Biology | https://doi.org/10.1371/journal.pbio.2001073 April 13, 2017 17 / 24

https://doi.org/10.1371/journal.pbio.2001073


distribution instead. Both functions are part of the EnvStats R package [87]. From these distri-

butions, we produced random values of response variables (phylogeographic structure, species

age, splitting rates, and lineage loss) for each species 100 times. We then ran univariate PGLS

models, recorded the adjusted R2 values for each model, and then compared the proportion of

simulated R2 values above the empirical R2 value. If<5% of the simulated values were greater

than the empirical R2 value, we concluded that the empirical species trait values were not gen-

erated by this random process. We plotted null models for phylogeographic structure (S2 Fig),

splitting rate using stem age (S3 Fig), splitting rate using crown age (S4 Fig), and the lineage

loss index (S5 Fig).

For multivariate models, we estimated AICc scores with a correction for sample size for a

full model with all variables and the AICc score for each model without each of the predictor

variables. We assessed the relative importance of each variable by calculating ΔAICc = AICca −
AICcf, where ΔAICc is the change in AICc between the model without a particular predictor

variable (AICca) and the full model (AICcf). Models with a ΔAICc> 2 are deemed to be signif-

icantly less likely than the full model, and the removed variable is considered important. We

report model output from the median AICc score of the 100 full models, based on each of the

100 different trees. We then used the tree that produced the median AICc score for the full

model to report the output for the alternative models. Because the environmental variables in

our dataset are correlated, we ran different sets of multivariate models with uncorrelated vari-

ables. Each set of models assessing variable importance included only one of following: (1) lati-

tudinal midpoint; (2) net primary productivity; (3) mean temperature and precipitation, and

temperature and precipitation seasonality; (4) bioclimatic PC1; (5) climatic instability since

the Last Glacial Maximum; and (6) range in mean temperature and precipitation, temperature

and precipitation seasonality, and elevational preference. We report AICc weights in order to

show the relative stability of similar models using different treatments. We did not perform

model averaging because the large numbers of variables and models would lead to data dredg-

ing, and interpreting the biological significance of these models would be difficult.

Our predictions for the influence of variables on phylogeographic metrics are shown in S1

Table. To briefly summarize, we expect that phylogeographic structure will be higher in older

species that persist in the landscape [e.g., 8], inhabit areas that were more climatically stable

between glacial—interglacial periods [e.g., 88], are distributed in areas with more energy [e.g.,

28], inhabit more topographically complex areas [e.g., 89] or broader environmental condi-

tions, have lower dispersal abilities [e.g., 4,41], and have larger geographical ranges. We expect

similar associations with splitting rates and species ages. The climatic stability of an area has

been suggested to both increase and decrease diversification rates [16,17,28]. Splitting rates

may asymptotically increase with range size as species fill up geographical space. Alternatively,

species ranges may be dynamic and decoupled from their rate of diversification. The geo-

graphic distance species migrate may facilitate diversification by allowing species to rapidly

colonize new environments [39], or migratory behavior may alternatively inhibit diversifica-

tion by limiting isolation among populations via gene flow [e.g., 90]. We predict that lineage

loss will be higher in temperate latitudes, species with smaller habitat breadth, areas with

greater historical climatic instability, and species with higher dispersal abilities, longer migra-

tory distances, and smaller ranges.

Additional trait data

We also mined foraging guilds (Fig 1D) and body sizes (Fig 1E) for sampled and unsampled

New World bird species from the EltonTraits database [25]. Because our dataset, while large

for a comparative phylogeographic study, includes only up to ~10% (Fig 1A; South American
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tropics) to ~30% (Fig 1A; temperate North America) of the total diversity, we compared the

two above mentioned traits to unsampled species.

Supporting information

S1 Fig. Heat maps showing standard deviation for corresponding maps in Fig 4. Shown are

crown (A) and stem (B) ages and mean crown (C) and stem (D) splitting rates, and lineage

loss (E) standard deviation. Crown age is the time in which extant mtDNA haplotypes within

each species coalesce. Stem age is the time of when the mtDNA haplotypes coalesce with the

species’ last common ancestor. Splitting rates were estimated using a pure-birth model. Line-

age loss is a relative index gauging the loss of lineages as determined from the standardized

length of the stem branch, see Materials and methods. Warmer colors denote higher values.

(PDF)

S2 Fig. Histograms of null models comparing adjusted R2 values from randomized and

empirical phylogeographic structure values. Red lines are empirical values and black lines

are the 95% quantile threshold of the R2 values from models using randomized values. The x-

axis shows R2 values for the predictor variable used in each univariate comparison. Additional

model output and underlying data are can be found in S3 and S7 Tables.

(PDF)

S3 Fig. Histograms of null models comparing adjusted R2 values from randomized and

empirical stem splitting rates. Red lines are empirical values and black lines are the 95%

quantile threshold of the R2 values from models using randomized values. The x-axis shows R2

values for the predictor variable used in each univariate comparison. Additional model output

and underlying data are can be found in S3 and S7 Tables.

(PDF)

S4 Fig. Histograms of null models comparing adjusted R2 values from randomized and

empirical crown splitting rates. Red lines are empirical values and black lines are the 95%

quantile threshold of the R2 values from models using randomized values. The x-axis shows

R2 values for the predictor variable used in each univariate comparison. Additional model out-

put and underlying data are can be found in S3 and S7 Tables.

(PDF)

S5 Fig. Histograms of null models comparing adjusted R2 values from randomized and

empirical lineage loss indices. Red lines are empirical values and black lines are the 95%

quantile threshold of the R2 values from models using randomized values. The x-axis shows R2

values for the predictor variable used in each univariate comparison. Additional model output

and underlying data are can be found in S3 and S7 Tables.

(PDF)

S6 Fig. Geographical coordinates for species used to produce sampling polygons. Ten lati-

tude-longitude coordinates were compiled for each species from published records or geore-

ferenced using descriptions of the sampling localities. For the lumped dataset some lineages

within the lumped species had less than 10 samples.

(PDF)

S7 Fig. Scatter plots with regression lines showing the relationship between sampling and

various variables. On the y-axis of each plot is the proportion of range size sampled versus

phylogeographic structure as determined by the number of bGMYC clusters using a 0.9

threshold (top left), absolute latitudinal midpoint (top right), range size km2 (bottom left), and
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mean elevational (m) occurrence (bottom right). Summary of regression for each plot is as fol-

lows: Phylogeographic Structure: Adjusted R2: 0.059, p-value: 0.0002; Absolute Latitudinal

Midpoint: Adjusted R2: 0.015, p-value: 0.043; Range Size: Adjusted R2: 0.004, p-value: 0.174;

Elevation: Adjusted R2: -0.004, p-value: 0.74. Blue line and grey shading are the regression line

and the 95% CI of the slope, respectively. The underlying data can be found in S2 Table.

(PDF)

S1 Table. Predictions of variable influence on phylogeographic metrics. The expected direc-

tionality of the correlation are shown: positive (+) or negative (-). N/A indicate there is no

clear indication of how the variables will interact.

(DOCX)

S2 Table. Spreadsheet containing taxon list and species data values.

(XLSX)

S3 Table. Spreadsheet containing PGLS models and output.

(XLSX)

S4 Table. Text file containing latitude and longitude coordinates mined from eBird. These

coordinates were used to extract environmental data for each species.

(TXT)

S5 Table. Output from principal components analysis of 19 climatic variables. Shown are

factor loadings, eigenvalues, and the percentage of the variation explained for each of the first

four PC axes.

(DOCX)

S6 Table. Spreadsheet containing taxon list and morphological data.

(XLSX)

S7 Table. Spreadsheet containing R2 values from univariate null models. These data values

were used to produce the histograms in S2–S5 Figs.

(XLSX)

S1 Data. Zip file containing mitochondrial DNA sequences alignments as nexus files for

the species listed in S2 Table.

(ZIP)
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DNA from Adélie penguins. Science. 2002; 295: 2270–2273. https://doi.org/10.1126/science.1068105

PMID: 11910113

59. Zink RM, Weckstein JD. Recent evolutionary history of the fox sparrows (genus: Passerella). Auk.

2003; 120: 522–527.

60. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analy-

sis version 6.0. Mol Biol Evol. 2013; 30: 2725–2729. https://doi.org/10.1093/molbev/mst197 PMID:

24132122

61. Rambaut A, Drummond AJ. Tracer version 1. 7; 2014. [accessed 1 August 2014] Computer Program:

Authors webpage [Internet]. http://evolve.zoo.ox.ac.uk.

62. Hickerson MJ, Dolman G, Moritz C. Comparative phylogeographic summary statistics for testing simul-

taneous vicariance. Mol Ecol. 2006; 15: 209–223. https://doi.org/10.1111/j.1365-294X.2005.02718.x

PMID: 16367841

63. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software

STRUCTURE: a simulation study. Mol Ecol. 2005; 14: 2611–2620. https://doi.org/10.1111/j.1365-

294X.2005.02553.x PMID: 15969739

64. Pickrell JK, Pritchard JK. Inference of population splits and mixtures from genome-wide allele frequency

data. PLoS Genet. 2012; 8: e1002967. https://doi.org/10.1371/journal.pgen.1002967 PMID: 23166502

65. Sukumaran J, Knowles LL. Multispecies coalescent delimits structure, not species. Proc Natl Acad Sci.

2017; 201607921.

Macrophylogeography of new world birds

PLOS Biology | https://doi.org/10.1371/journal.pbio.2001073 April 13, 2017 23 / 24

https://doi.org/10.1111/j.1461-0248.2012.01855.x
https://doi.org/10.1111/j.1461-0248.2012.01855.x
http://www.ncbi.nlm.nih.gov/pubmed/22909289
https://doi.org/10.1098/rsos.140375
http://www.ncbi.nlm.nih.gov/pubmed/26064600
https://doi.org/10.1111/j.1558-5646.2007.00095.x
http://www.ncbi.nlm.nih.gov/pubmed/17492966
https://doi.org/10.1126/science.1130880
http://www.ncbi.nlm.nih.gov/pubmed/17023653
https://doi.org/10.1038/nature11631
http://www.ncbi.nlm.nih.gov/pubmed/23123857
https://doi.org/10.1371/journal.pone.0166307
http://www.ncbi.nlm.nih.gov/pubmed/27880775
http://www.ncbi.nlm.nih.gov/pubmed/11209764
https://doi.org/10.1111/ele.12695
http://www.ncbi.nlm.nih.gov/pubmed/27781365
http://www.museum.lsu.edu/~Remsen/SACCBaseline.htm
https://doi.org/10.1093/molbev/mss075
http://www.ncbi.nlm.nih.gov/pubmed/22367748
https://doi.org/10.1111/j.1365-294X.2008.03742.x
https://doi.org/10.1111/j.1365-294X.2008.03742.x
http://www.ncbi.nlm.nih.gov/pubmed/18422932
https://doi.org/10.1098/rspb.2010.0965
http://www.ncbi.nlm.nih.gov/pubmed/20610427
https://doi.org/10.1126/science.1068105
http://www.ncbi.nlm.nih.gov/pubmed/11910113
https://doi.org/10.1093/molbev/mst197
http://www.ncbi.nlm.nih.gov/pubmed/24132122
http://evolve.zoo.ox.ac.uk
https://doi.org/10.1111/j.1365-294X.2005.02718.x
http://www.ncbi.nlm.nih.gov/pubmed/16367841
https://doi.org/10.1111/j.1365-294X.2005.02553.x
https://doi.org/10.1111/j.1365-294X.2005.02553.x
http://www.ncbi.nlm.nih.gov/pubmed/15969739
https://doi.org/10.1371/journal.pgen.1002967
http://www.ncbi.nlm.nih.gov/pubmed/23166502
https://doi.org/10.1371/journal.pbio.2001073


66. R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical

Computing; 2015. https://www.r-project.org.

67. Magallón S, Sanderson MJ (2001) Absolute diversification rates in angiosperm clades. Evolution. 55:

1762–1780. PMID: 11681732

68. Rabosky DL (2006) LASER: a maximum likelihood toolkit for detecting temporal shifts in diversification

rates from molecular phylogenies. Evol Bioinform Online. 2: 247.

69. Ridgely RS, Allnutt TF, Brooks T, McNicol DK, Mehlman DW, Young BE, et al. Digital distribution maps

of the birds of the Western Hemisphere; 2003. [cited 14 February 2017] Database: NatureServe [Inter-

net]. http://www.natureserve.org/conservation-tools/digital-distribution-maps-birds-western-

hemisphere.

70. BirdLife International. IUCN Red List for birds; 2014. [cited 14 February 2017] Database: BirdLife Inter-

national [Internet]. http://www.birdlife.org.

71. Jenkins CN, Pimm SL, Joppa LN. Global patterns of terrestrial vertebrate diversity and conservation.

Proc Natl Acad Sci. 2013, 110: E2602–E2610. https://doi.org/10.1073/pnas.1302251110 PMID:

23803854

72. Hurlbert AH, Jetz W. Species richness, hotspots, and the scale dependence of range maps in ecology

and conservation. Proc Natl Acad Sci. 2007; 104: 13384–13389. https://doi.org/10.1073/pnas.

0704469104 PMID: 17686977

73. Sullivan BL, Wood CL, Iliff MJ, Bonney RE, Fink D, Kelling S. eBird: A citizen-based bird observation

network in the biological sciences. Biol Con. 2009; 142: 2282–2292.

74. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate sur-

faces for global land areas. Int J Climatol. 2005; 25: 1965–1978.

75. Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau A, Plutzar C, et al. Quantifying and mapping the

human appropriation of net primary production in earth’s terrestrial ecosystems. Proc Natl Acad Sci.

2007; 104: 12942–12947. https://doi.org/10.1073/pnas.0704243104 PMID: 17616580

76. Bivand R, Lewin-Koh N. maptools: Tools for reading and handling spatial objects. R package version

0.8–39. 2016. https://cran.r-project.org/web/package=maptools/index.html.

77. Hijmans RJ. raster: Geographic data analysis and modeling. R package version 2.5–8. 2016. https://

cran.r-project.org/web/packages/raster/index.html.

78. Keitt T H, Bivand R, Pebesma E, Rowlingson B. rgdal: bindings for the geospatial data abstraction

library. R package version 1.2–5. 2016. https://cran.r-project.org/web/packages/rgdal/index.html.

79. Melton MA. The geomorphic and paleoclimatic significance of alluvial deposits in southern Arizona. J

Geol. 1965; 73:1–38.

80. Freed LA. Loss of mass in breeding wrens: stress or adaptation? Ecology. 1981; 62: 1179–1186.

81. Pennycuick CJ. Modelling the flying bird, Vol 5. Burlington: Elsevier; 2008.

82. Claramunt S, Derryberry EP, Remsen JV, Brumfield RT. High dispersal ability inhibits speciation in a

continental radiation of passerine birds. Proc R Soc B. 2012; 279: 1567–1574. https://doi.org/10.1098/

rspb.2011.1922 PMID: 22090382

83. Freeman S, Jackson WM. Univariate metrics are not adequate to measure avian body size. Auk. 1990;

107: 69–74.

84. Orme D. caper: comparative analysis of phylogenetics and evolution in R. R package version 0.5.2.

2013. https://cran.r-project.org/web/packages/caper/index.html.

85. Hackett SJ, Kimball RT, Reddy S, Bowie RC, Braun EL, Braun MJ, et al. A phylogenomic study of birds

reveals their evolutionary history. Science. 2008; 320: 1763–1768. https://doi.org/10.1126/science.

1157704 PMID: 18583609

86. Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinfor-

matics. 2004; 20: 289–290. PMID: 14734327

87. Millard SP. EnvStats: an R package for environmental statistics, including US EPA guidance. R pack-

age version 2.1.1. 2016. https://cran.r-project.org/web/packages/EnvStats/index.html.

88. Carnaval AC, Waltari E, Rodrigues MT, Rosauer D, VanDerWal J, Damasceno R, et al. Prediction of

phylogeographic endemism in an environmentally complex biome. Proc R Soc B. 2014; 281:

20141461. https://doi.org/10.1098/rspb.2014.1461 PMID: 25122231

89. Klicka J, Spellman GM, Winker K, Chua V, Smith BT. A phylogeographic and population genetic analy-

sis of a widespread, sedentary North American bird: The Hairy Woodpecker (Picoides villosus). Auk.

2011; 128: 346–362.

90. van Els P, Spellman GM, Smith BT, Klicka J. Extensive gene flow characterizes the phylogeography of

a North American migrant bird: Black-headed Grosbeak (Pheucticus melanocephalus). Mol Phylogenet

Evol. 2014; 78:148–159.

Macrophylogeography of new world birds

PLOS Biology | https://doi.org/10.1371/journal.pbio.2001073 April 13, 2017 24 / 24

https://www.r-project.org
http://www.ncbi.nlm.nih.gov/pubmed/11681732
http://www.natureserve.org/conservation-tools/digital-distribution-maps-birds-western-hemisphere
http://www.natureserve.org/conservation-tools/digital-distribution-maps-birds-western-hemisphere
http://www.birdlife.org
https://doi.org/10.1073/pnas.1302251110
http://www.ncbi.nlm.nih.gov/pubmed/23803854
https://doi.org/10.1073/pnas.0704469104
https://doi.org/10.1073/pnas.0704469104
http://www.ncbi.nlm.nih.gov/pubmed/17686977
https://doi.org/10.1073/pnas.0704243104
http://www.ncbi.nlm.nih.gov/pubmed/17616580
https://cran.r-project.org/web/package=maptools/index.html
https://cran.r-project.org/web/packages/raster/index.html
https://cran.r-project.org/web/packages/raster/index.html
https://cran.r-project.org/web/packages/rgdal/index.html
https://doi.org/10.1098/rspb.2011.1922
https://doi.org/10.1098/rspb.2011.1922
http://www.ncbi.nlm.nih.gov/pubmed/22090382
https://cran.r-project.org/web/packages/caper/index.html
https://doi.org/10.1126/science.1157704
https://doi.org/10.1126/science.1157704
http://www.ncbi.nlm.nih.gov/pubmed/18583609
http://www.ncbi.nlm.nih.gov/pubmed/14734327
https://cran.r-project.org/web/packages/EnvStats/index.html
https://doi.org/10.1098/rspb.2014.1461
http://www.ncbi.nlm.nih.gov/pubmed/25122231
https://doi.org/10.1371/journal.pbio.2001073

