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ABSTRACT
The Willet (Tringa semipalmata; Scolopacidae) is composed of 2 morphologically and vocally distinct subspecies with
broadly disjunct breeding distributions in North America. Nominate T. s. semipalmata breeds in coastal salt and
brackish marshes along the Atlantic and Gulf coasts of eastern North America and the West Indies, and T. s. inornata
breeds in wet grasslands and prairies in the northwestern interior of North America. To assess divergence and test for
hybridization between the 2 subspecies, we sampled breeding and wintering populations and collected
morphological data, mitochondrial DNA sequences from the ND2 locus, and nuclear DNA sequences from genomic
libraries enriched for ultraconserved elements (UCEs). Mitochondrial haplotypes were reciprocally monophyletic
between the 2 subspecies and indicated divergence approximately 700,000 yr ago. The UCE dataset included 4,635
loci containing 19,322 single nucleotide polymorphisms (SNPs), and, based on these data, individuals clustered by
subspecies with no evidence of admixture between them and no substructure within subspecies. We identified 42
nuclear loci that contained SNPs fixed for alternate alleles between the 2 subspecies. Of the 42 loci with fixed
differences, a statistically disproportional 17 were Z-linked, indicating a role for sexual selection in the divergence of
the 2 subspecies. Genetic, morphological, ecological, and behavioral differences suggest that the 2 Willet subspecies
may merit treatment as separate species. Further studies are needed to determine the presence of pre- or post-mating
reproductive isolation.

Keywords: ultraconserved elements, shorebirds, Tringa, Z chromosome, species delimitation, sexual selection,
drift, systematics

¿Tringa semipalmata es una especie o dos? Una mirada genómica de su historia evolutiva

RESUMEN
Tringa semipalmata (Scolopacidae) es una especie compuesta por dos subespecies morfológicamente y vocalmente
distintas, con distribuciones reproductivas en gran medida disyuntas en América del Norte. T. s. semipalmata crı́a en
pantanos salobres costeros a lo largo del Atlántico y del Golfo en el este de América del Norte y de las Indias
Occidentales, y T. s. inornata crı́a en los pastizales húmedos y las praderas en el interior al noroeste de América del
Norte. Para estimar la divergencia y evaluar una hibridación entre las dos subespecies, muestreamos las poblaciones
reproductivas e invernales y colectamos datos morfológicos, secuencias de ADN mitocondrial del locus ND2 y
secuencias de ADN nuclear de bibliotecas genómicas enriquecidas con elementos ultra-conservados (UCE por sus
siglas en inglés). Los haplotipos mitocondriales fueron recı́procamente monofiléticos entre las dos subespecies e
indicaron una divergencia hace aproximadamente 700,000 años. La base de datos de UCE incluyó 4,635 loci
conteniendo 19,322 polimorfismos de nucleótido único (SNP por sus siglas en inglés), y basados en estos datos los
individuos se agruparon por subespecies sin que haya evidencia de mezcla entre ellos y ni sub-estructura al interior de
las subespecies. Identificamos 42 loci nucleares que contuvieron SNPs fijos para alelos alternos entre las dos
subespecies. De los 42 loci con diferencias fijas, una cantidad estadı́sticamente desproporcionada de 17 estuvieron
vinculados al Z, indicando que la selección sexual juega un rol en la divergencia de las dos subespecies. Las diferencias
genéticas, morfológicas, ecológicas y comportamentales sugieren que las dos subespecies de Tringa semipalmata
pueden merecer un tratamiento como especies separadas. Se necesitan estudios adicionales para determinar la
presencia de aislamiento pre- o post-apareamiento reproductivo.

Palabras clave: aves playeras, cromosoma Z, delimitación de especies, deriva, elementos ultra-conservados,
selección sexual, sistemática, Tringa
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INTRODUCTION

Recent advances in our understanding of behavioral,

ecological, and genetic diversity in North American birds

have resulted in the recognition of greater biological

species diversity, for example in Gunnison (Centrocercus

minimus) and Greater sage-grouse (C. urophasianus;

Hupp and Braun 1991, Young et al. 1994, Oyler-McCance

et al. 1999, 2015), large Rallus species (Maley and

Brumfield 2013), Winter (Troglodytes hiemalis) and

Pacific wrens (T. pacificus; Toews and Irwin 2008), Bell’s

(Artemisiospiza belli) and Sagebrush sparrows (A. neva-

densis; Cicero and Koo 2012), Dusky (Dendragapus

obscurus) and Sooty grouse (D. fuliginosus; Barrowclough

et al. 2004), Western (Aphelocoma californica) and Island

scrub-jays (A. insularis; Delaney et al. 2008), and Eastern

(Antrostomus vociferus) and Mexican whip-poor-wills (A.

arizonae; Han et al. 2010). In addition to morphological,

behavioral, and ecological data, genetic data have been

instrumental in illustrating the distinctness and evolu-

tionary independence of these species, but most studies

have been restricted to examining a limited number of

genetic markers. Studies relying on a few markers are

subject to biased inferences of population structure or
species limits if the histories of the markers are not

representative of the entire genome or do not accurately

represent the population’s history (Edwards and Beerli

2000). Recent advances in sequencing technology make it

possible to obtain markers from loci across the genome,

providing a large number of independent samples from

which to estimate population history. Genome-wide

studies of closely related avian taxa have revealed deep,

previously undetected divergences (Maley and Brumfield

2013, Smith et al. 2014, Harvey and Brumfield 2015,

Oyler-McCance et al. 2015), genomic islands of elevated

divergence (Ellegren et al. 2012), and elevated rates of

divergence on the avian Z chromosome (Lavretsky et al.

2015, Dhami et al. 2016).

The Willet (Tringa semipalmata) is a widespread,

migratory New World shorebird. It is composed of 2

broadly disjunct allopatric breeding populations found

across North America and the West Indies that exhibit

ecological, vocal, behavioral, and morphological differ-

ences (Figure 1A). The eastern subspecies (T. s. semi-

palmata Gmelin 1789; henceforth, semipalmata) breeds

almost exclusively in salt and brackish marshes along the

Atlantic Coast and the Gulf of Mexico south to

Tamaulipas, Mexico, and locally in the Caribbean (Howe

1982, Lowther et al. 2001, O’Brien et al. 2006a). The

nonbreeding distribution of semipalmata needs further

study, but it likely includes coastal areas south of the

breeding areas, from the Caribbean to eastern South

America south to Argentina (Figure 1B; AOU 1957, Howe

1982, Lowther et al. 2001, O’Brien et al. 2006a, Martinez-

Curci et al. 2014, Van Gils and Wiesma 2014). The

western subspecies (T. s. inornata Brewster 1887;

henceforth, inornata) breeds in brackish and freshwater

wetlands and in grassland habitats in the Great Basin and

prairies of the northwestern U.S. and southern Canada

(Lowther et al. 2001, O’Brien et al. 2006b). This

subspecies winters along rocky shorelines and on beaches

along the Pacific Coast from Washington in the U.S. to

central Chile, and in coastal areas on the Atlantic Coast

from New Jersey south to the Gulf Coast of the U.S., and

in northern and eastern South America and occasionally

to Argentina (Figure 1C; AOU 1957, Lowther et al. 2001,

O’Brien et al. 2006b, Martinez-Curci et al. 2014). The 2

subspecies can be syntopic during migration and on

wintering grounds. Further, some inornata may remain

on their wintering grounds and then are syntopic with

breeding semipalmata (e.g., in Louisiana, USA; D. Ditt-

man and S. Cardiff personal observation; specimen

LSUMZ 71709). Pair bonding in semipalmata is known

to occur on the breeding grounds (Howe 1982) and,
although to the best of our knowledge this has not been

studied, is also likely to occur on the breeding grounds in

inornata. Tomkins (1955) reported that some semi-

palmata arrive on the breeding grounds already paired,

but this may simply reflect pair bonding elsewhere within

the breeding range and then movement to nest sites, or

nest site philopatry. The inornata that ‘summer’ on their

wintering grounds are not reproductively active. For

example, in Louisiana, USA, summering inornata do not

attain full prealternate (breeding) plumage or are molting

to basic plumage during the breeding period of semi-

palmata, and their gonads do not show evidence of

breeding (e.g., specimen LSUMZ 71709; D. Dittman and

S. Cardiff personal observation).

Differences in morphological (mensural and plumage)

characteristics led Brewster (1887) to describe inornata

as distinct from semipalmata. T. s. inornata is larger

overall (on average, 10% larger), with a longer wing and

tarsus (Pyle 2008). Bill measurements overlap, but

inornata generally has a longer and broader bill (Pyle

2008). In prealternate plumage, semipalmata is darker

overall and more heavily patterned. Nondefinitive or

transitional plumages are similar. The songs of the 2

subspecies also differ, with the songs of semipalmata

being higher in frequency and shorter in duration than

those of inornata (Douglas 1996, 1998), a difference

thought to reflect differences in the background acoustic

environments between coastal and inland habitats

(Douglas 1999).

Douglas (1998) used playback experiments in a breeding

population of semipalmata to assess whether song could

be a premating reproductive isolating mechanism between

the 2 subspecies. He found that semipalmata (he was

unable to distinguish sexes) responded to male ‘pill-will-
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willet’ songs of semipalmata, but not of inornata. Because

the ‘pill-will-willet’ song is used during pair bonding (Vogt

1937, Hansen 1979, Sordahl 1979, Howe 1982), this

suggests that the song could be a premating reproductive

isolating mechanism. However, semipalmata did not

discriminate between the ‘kik’ and ‘dik’ calls that are

associated with reproductive behavior (Douglas 1998).

Reciprocal playback studies across the distribution of both

subspecies are needed to assess whether songs and calls are

premating reproductive isolating mechanisms.

Here, we use ultraconserved elements (UCEs), mito-

chondrial DNA sequence data, and morphological data to

characterize genetic and morphological differences be-

tween the 2 subspecies and to look for evidence of

introgression. UCEs are regions of the genome that are

highly conserved in sequence similarity among species

(Bejerano et al. 2004). The variable flanking regions of the

UCEs allow the assessment of genetic differentiation

within and across species (Smith et al. 2013, Harvey and

Brumfield 2015, Harvey et al. 2015).

FIGURE 1. (A) Photograph of Tringa semipalmata semipalmata (left) and T. s. inornata (right) in late July, 2015, at Nags Head, North
Carolina, USA. Both individuals are adults in worn alternate plumage. Photo credit: Michael O’Brien; (B) Map of the breeding,
wintering, and year-round distribution of T. s. semipalmata; and (C) Breeding and wintering distribution of T. s. inornata.
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METHODS

We sampled 30 Tringa semipalmata individuals (19

inornata, 11 semipalmata; Table 1). Our sample of

inornata included 6 individuals from 1 breeding popula-

tion (Wyoming, USA), with the rest representing non-

breeding individuals from California, Louisiana, and

Florida, USA. For semipalmata, we sampled individuals

from the Atlantic (New York, USA) and Gulf Coast

(Louisiana and Texas, USA) breeding populations, but

lacked samples from any Caribbean breeding population.

We inferred breeding condition from gonad size and

plumage traits (Table 1). Wintering individuals were

identified to subspecies based on morphology.

We extracted total DNA from the pectoral muscle using

a DNeasy tissue extraction kit (Qiagen, Valencia, Califor-

nia, USA). After quantification using a Qubit 2.0 (Thermo-

Fisher Scientific, Waltham, Massachusetts, USA), we sent 2

lg of DNA at a concentration of 40–100 ng ll�1 to Rapid

Genomics (Gainesville, Florida, USA) for sequence capture

using the Tetrapods-UCE-K5v1 probe set (ultraconserved.

org) and sequencing following the protocol outlined by

Faircloth et al. (2012). Samples were multiplexed at 160

samples per lane on a 100 base pairs (bp) paired-end

Illumina HiSeq 2500 run (Illumina, San Diego, California,

USA).

Bioinformatics
We demultiplexed raw reads using Casava 1.8 (Illumina)

and cleaned reads with Illumiprocessor (Faircloth 2013).

We used the seqcap_pop pipeline (https://github.com/

mgharvey/seqcap_pop) to process the assembled datasets.

We used Velvet (Zerbino and Birney 2008) and the

wrapper program Velvet Optimiser (http://bioinformatics.

net.au/software.velvetoptimiser.shtml), exploring hash

lengths of between 67 and 71, to assemble reads across

TABLE 1. Sample information for individuals of Tringa semipalmata semipalmata and T. s. inornata sampled in Wyoming, California,
Florida (inornata), New York, Texas (semipalmata), and Louisiana, USA (both subspecies). For each individual in our dataset the
following information is provided: the museum where the skin or skeleton specimen resides; skin or skeleton catalog number; tissue
number; subspecific identification; collection locality within the U.S.; date of collection; sex identified from gonads; condition:
breeding (B), nonbreeding (NB), wintering (W), and migrating (M); and, if applicable, GenBank accession number for ND2 sequence
data. An asterisk next to the catalog number signifies that the specimen is a skeleton. LSUMZ is the Lousiana State University
Museum of Natural Science, SBCM is the San Bernardino County Museum, FLMNH is the Florida Museum of Natural History, UWYMV
is the University of Wyoming Museum of Vertebrates, and AMNH is the American Museum of Natural History.

Museum Catalog no. Tissue no. Subspecies Collection locality Collection date Sex Condition GenBank no.

LSUMZ 156047 16877 inornata California April 16, 1991 Male M KU854980
LSUMZ 156049 16879 inornata California April 16, 1991 Male M KU854977
LSUMZ 156050 16880 inornata California April 16, 1991 Female M
LSUMZ NA 9786 inornata California December 1, 1984 Unknown W KU854976
LSUMZ NA 9837 inornata California December 1, 1984 Unknown W KU854981
SBCM 54276 23154 inornata California April 18, 1994 Male M
SBCM 54880 24764 inornata California August 8, 1996 Male M KU854982
LSUMZ 161029* 27058 inornata California January 13, 1993 Male W KU854978
SBCM 59169 53202 inornata California August 24, 2006 Female M
FLMNH 44900 59289 inornata Florida August 17, 2005 Female W
LSUMZ 159110 19407 inornata Louisiana April 25, 1993 Female M KU854979
LSUMZ 185324 71705 inornata Louisiana March 27, 2011 Female W/M
LSUMZ 185328 71709 inornata Louisiana June 16, 2011 Female NB KU854975
UWYMV 2808 747 inornata Wyoming July 9, 2014 Male B
UWYMV 2809 748 inornata Wyoming July 9, 2014 Female B
UWYMV 2810 749 inornata Wyoming July 9, 2014 Female B
UWYMV 2812 782 inornata Wyoming July 9, 2014 Female B
UWYMV 2813 783 inornata Wyoming July 9, 2014 Male B
UWYMV 2811 784 inornata Wyoming July 9, 2014 Male B
AMNH 26045* 5985 semipalmata New York June 1, 1999 Male B KU854965
AMNH 26044* 5966 semipalmata New York May 1, 2000 Female B KU854969
AMNH 26046* 5967 semipalmata New York June 1, 2000 Female B KU854973
LSUMZ 151993 15556 semipalmata Louisiana March 18, 1990 Male M/B KU854966
LSUMZ 173598 43221 semipalmata Louisiana May 31, 1999 Male B KU854967
LSUMZ 183976 61138 semipalmata Louisiana April 15, 2007 Male B
LSUMZ 185134 62980 semipalmata Louisiana June 15, 2010 Unknown NB (chick) KU854968
LSUMZ 185325 71706 semipalmata Louisiana March 27, 2011 Female B KU854971
LSUMZ 185326 71707 semipalmata Louisiana March 27, 2011 Male B KU854972
LSUMZ 185327 71708 semipalmata Louisiana June 16, 2011 Female B KU854974
LSUMZ 175755 47313 semipalmata Texas May 5, 2001 Male B KU854970
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all individuals into contigs (contiguous sequences of DNA

created by assembling overlapping sequenced fragments of

a chromosome) de novo. We mapped contigs to UCE

probe sequences using Phyluce (Faircloth 2015). For each

individual, we mapped reads to contigs that mapped to

UCEs using the program bwa (Li and Durbin 2009). We

explored thresholds that allowed anywhere from 1 to 7

mismatches between reads for mapping. We converted

sam files to bam format using SAMtools (Li et al. 2009),

and cleaned bam files by soft-clipping reads outside the

reference contigs with Picard (http://broadinstitute.github.

io/picard/). We added read groups for each individual

using Picard and merged the bam files across individuals

with SAMtools. We realigned reads to minimize mis-

matched bases using RealignerTargetCreator and realigned

indels (insertions and deletions) using IndelRealigner in

the Genome Analysis Toolkit (GATK; McKenna et al.

2010). We identified single nucleotide polymorphisms

(SNPs) and indels using the GATK UnifiedGenotyper,

annotated SNPs with VariantAnnotator, and masked indels

using VariantFiltration. We removed SNPs with a quality

score below Q30 and conducted read-backed phasing

using GATK. We outputted SNPs in vcf format and used

the program add_phased_snps_to_seqs_filter.py from

seqcap_pop to insert SNPs into reference sequences and

to produce alignments for each locus across individuals.

SNPs on the same locus for which phasing failed were

inserted using the appropriate International Union of Pure

and Applied Chemistry (IUPAC) ambiguity codes. We

collated sequences and produced final alignments using
Multiple Alignment using Fast Fourier Transform

(MAFFT; Katoh et al. 2005). Python scripts (available at

https://github.com/mgharvey/seqcap_pop) were used to

make input files for G-PhoCS (Gronau et al. 2011) and

Structure (Pritchard et al. 2000).

Quantifying Genetic Differentiation and Population
Structure
With the UCE data, we used a discriminant analysis of

principal components (DAPC) to identify clusters of

genetically related individuals (Jombart et al. 2010). This

is a computationally fast, multivariate method designed for

large genomic datasets (Jombart et al. 2010). DAPC assigns

individuals to genetic groups by maximizing the differ-

ences between groups and minimizing the variation within

a group (Jombart et al. 2010).

In addition to DAPC, we estimated the number of

populations and conducted population assignment of

individuals using all UCE SNPs and the linkage model in

Structure 2.3.4 (Pritchard et al. 2000). Structure assigns

individuals into a user-defined number of populations (K)

and gives likelihood values for each data partition to those

populations under an assumption of Hardy-Weinberg

equilibrium. We did not assign individuals to populations

a priori. After an initial burn-in of 10,000 generations, we

used 500,000 Markov chain Monte Carlo (MCMC)

generations in the Structure analyses. We performed 10

replicates each for K¼ 1–5. Structure Harvester (Earl and

vonHoldt 2012) was used to summarize the Structure

output, to implement the Evanno method (Evanno et al.

2005), and to produce input files for CLUMPP (Jakobsson

and Rosenberg 2007). Structure uses a stochastic algo-

rithm, which can result in individuals being assigned to

different populations across replicates (Jakobsson and

Rosenberg 2007). Using the CLUMPP FullSearch algo-

rithm, we found the optimal alignment across the

Structure analyses. We used R (R Core Team 2015) and

the CLUMPP output file with sample assignments to

visually display results. To assess whether finer levels of

population structure were present within inornata and

semipalmata, we ran additional Structure analyses (again

with K ¼ 1–5) on datasets composed of just inornata or

just semipalmata individuals.

Summary Statistics
We estimated standard population genetic summary

statistics from UCE alignments using the Bio.PopGen

module in Biopython (Cock et al. 2009). We used the

14,285 SNPs with �50% complete data across individuals

(74% of the total number of SNPs) to identify SNPs with

alleles that were fixed between the 2 subspecies and to

calculate the fixation index (FST) for each locus. FST is a

measure of the within-population genetic variance relative

to the total genetic variance, where FST ¼ 1 � (mean

distance between sequences within populations / mean

distance between sequences between populations). FST
values range from 0 to 1; a value of 0 indicates that

populations are interbreeding freely, and an FST of 1

suggests that populations do not share any alleles.

Fixed differences between the subspecies might have

been present in our sample simply due to the limited

sample size. To test the proportion of the fixed differences

that could have been explained just by sampling, we

examined the number of fixed differences that were

present when each of the individuals were randomly

assigned to populations of the same size as the actual

sampled populations. We conducted this permutation test

1,000 times and compared the number of fixed differences

with random assignments to the number observed with the

actual population assignments.

We conducted coalescent simulations to assess how the

observed number of fixed differences at UCE loci

compared with the expected number of fixed differences

given the level of mitochondrial divergence and the

differences in effective population size between the

mitochondrion, Z-linked, and autosomal markers. To build

the expected distribution we simulated 1,000 datasets of

the same size as the empirical dataset using the divergence
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time estimated from the mitochondrial data and the

demographic history estimated from the UCE alignments

and counted the number of fixed SNPs in each replicate.

We simulated the mapping of loci to the Z chromosome

using effective population sizes that were ł of the size of

autosomal loci, and the number of simulated samples from

these loci reflected the reduced number of chromosomes

due to heterogamy of females in the empirical dataset.

Estimation of Demographic History
To estimate current and historical population sizes and

migration rates, we used program G-PhoCS 1.2.1 (Gronau

et al. 2011), which is a Bayesian MCMC program for large

datasets. We examined models with no migration between

populations subsequent to divergence and a model

allowing for migration. We used all individuals in G-

PhoCS analyses and randomly selected 1,000 loci (~22% of

the total) to increase the number of iterations and to

reduce computation time. We used 2,000,000 iterations,

removed 10% of the iterations as burn-in, and evaluated

convergence in Tracer (Rambaut et al. 2014) to ensure that

all effective sample size (ESS) values were greater than 200.

Following the supplementary material in Gronau et al.

(2011), effective population size (Ne) was calculated with h
¼ 4Nel, where l is mutation rate per nucleotide site per

generation. Migration rates were calculated with the

migration rate per generation parameter (msx 3 hx/4 ¼
Msx), which is the proportion of individuals in population x

that arrived by migration from population s per generation.

Standardized substitution rates are not available for UCE
loci, so we determined the substitution rate by setting the

UCE divergence time to the divergence time inferred from

the dating analysis of mitochondrial data (see below). This

substitution rate was used for all parameter calibrations.

Assessing the Genomic Distribution of Fixed Alleles
To assess the genomic context of genetic differences

betweenWillet subspecies, we mapped the UCE loci to the

closest available genome assembly, that of the Killdeer

(Charadrius vociferus; Gilbert et al. 2014). Because the

Killdeer genome is in 15,167 scaffolds (fragments of

unknown order and relative position) rather than assem-

bled into chromosomes, we also mapped the loci to the

phylogenetically closest available genome that has chro-

mosome assemblies (Zebra Finch [Taeniopygia guttata];

Warren et al. 2010).We mapped loci using Blastn (Altschul

et al. 1990) with stringent similarity settings, and we

conducted analyses based on the mapping position with

the highest bit score for each locus. We were particularly

interested in the relative frequency of fixed alleles on sex-

linked loci mapping to the Z chromosome relative to the

autosomal loci. Given some number of fixed SNPs between

populations, a subset are expected to occur on UCEs

mapping to the Z chromosome due to chance. To test

whether this could explain the observed distribution of

fixed alleles, we permuted the locations of fixed SNPs

across the positions of all recovered UCE loci 1,000 times.

We corrected for the ł effective population size of the

avian Z chromosome relative to the autosomes and for the

fact that we had ł the number of chromosomes sampled

at the Z chromosome loci relative to autosomal loci

because some of the sampled individuals were females.

Evaluating Support for Alternative Species Limits
We conducted Bayes factor species delimitation using

SNPs with the method BFD* (Grummer et al. 2014, Leaché

et al. 2014). BFD* uses Bayes factors (Kass and Raftery

1995) to compare the marginal likelihoods of phylogenies

in which sample assignments to species differ in order to

evaluate support for different species delimitation strate-

gies.We used the species tree method SNAPP (Bryant et al.

2012) included in BEAST 2 (Bouckaert et al. 2014) and

path sampling to evaluate the marginal likelihoods of trees

in which the 2 Willet subspecies were either treated as

separate or combined into 1 taxon. To streamline

computation, we selected only inornata samples from

the breeding grounds (n ¼ 6) and the same number of

breeding semipalmata samples for analysis. As an out-

group, we used UCE sequences from the Killdeer genome,

extracted with Blastn (Altschul et al. 1990) and aligned to

Willet sequences using MAFFT (Katoh et al. 2005). We

selected a single SNP from each UCE locus for analysis to

maximize marker independence. Path sampling analyses
were run for 12 and 24 steps with 100,000 MCMC

generations following 10,000 pre-burn-in generations.

Log-normal distributions were used for the prior on the

parameter (lambda) governing species divergence rate and

for the rate priors.

Mitochondrial Data
We sequenced 1,041 base pairs (bp) of the mitochondrial

gene NADH dehydrogenase subunit 2 (ND2; H05216:

Hackett 1996; H06313: Sorenson et al. 1999) for 8 inornata

and 10 semipalmata individuals. In 2 samples (LSUMZ

5985 and LSUMZ 71708), only the forward sequencing

reaction was successful (see Table 1 for GenBank accession

numbers). ND2 was amplified via the following polymerase

chain reaction (PCR) protocol for 25 ll reactions:

denaturation stage at 948C for 5 min, followed by 34

cycles of 948C for 30 s, 60 s of annealing at 508C and 60 s at

728C, and termination with a 10 min 728C elongation. PCR

products were purified and Sanger sequenced at Beckman-

Coulter (Danvers, Massachusetts, USA). Geneious 9.0.2

(http://www.geneious.com, Kearse et al. 2012) was used to

evaluate and trim chromatograms, and MUSCLE (Edgar

2004) was used to align consensus sequences.

We used ND2 sequence data obtained from GenBank

and the sequence data generated for this project to build a
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phylogeny of the genus Tringa using the Spotted Sandpiper

(Actitis macularius) as an outgroup (Pereira and Baker

2005, Gibson and Baker 2012; see Appendix Table 4 for the

taxa used and GenBank accession numbers). To determine

the best-fit finite-sites substitution model for the dataset,

we used jModelTest 2.1.6 (Guindon and Gascuel 2003,

Darriba et al. 2012). The jModelTest 2.1.6 likelihood

settings included 3 substitution schemes, base frequencies,

gamma rate variation, and base tree search. We used

maximum likelihood phylogenetic analysis in RAxML

(Stamatakis 2014) and the general time reversible model

with gamma distributed rate variation (GTR þ C)
substitution model, and we ran 1,000 bootstrap replicates

to estimate a tree. We also used a Bayesian phylogenetic

approach to estimate a time-calibrated tree in BEAST 2

(Bouckaert et al. 2014). We used a relaxed log-normal

clock with a mean of 2.5% per million years (Smith and

Klicka 2010) and the GTR þ C substitution model for

calibration. We ran the Bayesian analysis for 100 million

iterations, sampling every thousand, checked convergence

in Tracer (Rambaut et al. 2014), and estimated a maximum

clade credibility tree after removing the first 10% of

samples as burn-in. Finally, we built an ND2 haplotype

network in PopART (Leigh and Bryant 2015) using the

Templeton, Crandall, and Sing (TCS) algorithm (Clement

et al. 2002).

Variation in Morphological Characters
To quantify morphological differences between subspecies,

we measured tarsus length, wing chord, exposed culmen,
bill depth at the distal end of nares, and the ratio of bill

depth at the distal end of nares to exposed culmen in 5

nonbreeding inornata from California, Florida, and

Louisiana, 5 breeding inornata from Wyoming, and 7

semipalmata (6 breeding and 1 nonbreeding) from

Louisiana. The individuals measured were represented in

our genomic dataset, so we were able to corroborate

subspecific identification based on morphometric and

genomic data. To determine whether mensural characters

clustered with the subspecific designations of the individ-

uals in our dataset, we used a principal components

analysis (PCA) in ggplot2 (Wickham 2009), with an ellipse

probability of 0.95. We used a linear discriminant function

analysis in the MASS package (Venables and Ripley 2002)

in R to evaluate how well a priori groupings of individuals

by subspecies were supported by measured morphological

characters.

RESULTS

Population Genetic Differentiation and Structure
Of the 4,635 UCE loci that we recovered, 283 were

invariant (see Supplemental Material). The variable loci

contained 19,322 SNPs. From the total sample of 30

individuals, we identified 42 loci containing 43 SNPs that

were fixed for alternate alleles between semipalmata and

inornata (Appendix Table 5). This is a significantly higher

number of fixed SNPs than would be expected simply due

to our sample sizes (P , 0.001). Assuming the divergence

time between populations estimated from mtDNA and the

demographic history estimated from the empirical UCE

data using G-PhoCS, the number of fixed nuclear SNPs fell

within the expected range. DAPC analyses recovered 2

distinct genetic clusters that separated in multivariate

space and corresponded to the 2 subspecies based on the

distribution- and morphology-based specimen identifica-

tions (Figure 2A). The optimal number of populations (K)

in the Structure analysis was 2, based on DK and likelihood

scores. The individual assignments revealed 2 distinct

groups corresponding to the 2 subspecies, with no

individuals of mixed ancestry (Figure 2B, Appendix Table

6). Structure analyses run separately on the inornata and

semipalmata datasets recovered an optimal K of 1 for both

subspecies (Appendix Table 7). Average per-locus FST was

0.14, but with wide variation across loci (SD¼ 0.31; FST for

each locus can be found in Supplemental Material; for a

histogram of FST values see Appendix Figure 6).

Effective Population Size and Migration
When divergence time betweenWillet subspecies from G-

PhoCS was normalized to the value from the time-

calibrated Bayesian phylogenetic tree from ND2, the

inferred UCE substitution rate was 2.59 3 10�4 substitu-

tions per million years (95% highest posterior density ¼
9.523 10�5 to 6.503 10�4). G-PhoCS results indicated that

the effective population size (Ne) was on average 2.5 times

greater for inornata than for semipalmata (Table 2). Both

subspecies had a higher inferred Ne than their ancestral

population (Table 2). Mean migration rates estimated

using G-PhoCS were close to 0 (0.0002 individuals per

generation; Table 2).

ND2 Phylogeny and Network
In the time-calibrated BEAST 2 tree, the 2 Willet

subspecies diverged 729,799 yr ago (95% highest posterior

density ¼ 290,328 to 1,411,779 yr ago; Figure 3A; see

Appendix Figure 7 for expanded RAxML and BEAST

phylogenies). Based on our limited sample size, 5 base-pair

differences separated the mitochondrial haplotype groups

of the 2 subspecies (Figure 3B), and inornata showed

greater ND2 haplotype diversity (Appendix Table 8). The

subspecies exhibited 0.85% mean sequence divergence

(Appendix Table 9).

UCE Mapping
Of the 4,635 UCE loci, 4,611 (99.5%) successfully mapped

to the Killdeer genome and 4,607 (99.4%) to the Zebra

Finch genome. We identified 42 UCE loci containing 43
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SNPs fixed for alternate base pairs between inornata and

semipalmata (Appendix Table 5). When mapped to the

Zebra Finch genome assembly, 17 of the SNPs with fixed

differences mapped to the Z chromosome (Appendix Table

5, Figure 4). Based on 1,000 permutations of the

distribution of fixed SNPs across UCE loci, the number

of loci with fixed SNPs on the Z chromosome was

disproportionately high (P , 0.001), even when we

accounted for the higher probability of fixation due to

the ł effective population size of the Z chromosome

relative to the autosomes and the reduced sample from the

Z chromosome due to the female individuals in our dataset

(Appendix Figure 8). Similarly, coalescent simulations

indicated that the frequency of fixed SNPs on the Z

chromosome was higher than would be explained by

neutral processes (P ¼ 0.002).

Twenty of the 42 loci with fixed SNPs, including 4 of the

17 loci that occurred on the Z chromosome, were within

predicted exons based on the annotations in the Killdeer

genome (Gilbert et al. 2014). The number of fixed SNPs

within exons was higher than expected by chance (P ¼
0.013; Appendix Figure 9). However, the UCE alignments

with fixed SNPs did not contain open reading frames,

which complicated a more detailed assessment of the

function of these loci or a determination of whether the

substitutions were silent or not. It is also important to note

that the apparent absence of open reading frames in these

loci could have been due to errors in the assemblies that

resulted in frame shifts, to differences betweenWillets and

Killdeer in the locations of functional genes, to erroneous

mapping results, or to errors in the exon predictions in the

Killdeer genome.

Species Delimitation

Bayes factor species delimitation strongly supported the

treatment of the 2 Willet subspecies as separate species

(Bayes factor ¼ 978, with Bayes factors . 10 generally

considered decisive; Kass and Raftery 1995). For each

species delimitation scheme, the marginal likelihood values

differed little between path sampling analyses involving 12

and 24 steps, suggesting that the runs of 24 steps were

sufficient for accurate marginal likelihood estimation.

Variation in Morphological Characters

Mean measurements of morphological characters corre-

sponded to subspecies ranges listed by Pyle (2008):

inornata ¼ wing chord .200 mm, tarsus .60, exposed

culmen 55–67 mm; semipalmata¼wing chord ,200 mm,

tarsus ,60 mm, exposed culmen 47–61 mm. Western

(inornata) individuals had a longer wing chord (mean 210

mm vs. semipalmata ¼ 199 mm) and longer exposed

culmen (59 mm vs. semipalmata ¼ 58 mm). Mean tarsus

length also was longer in inornata (63 mm vs. 56 mm,

respectively). The bill depth at the distal edge of the nares

was slightly different between the 2 subspecies (inornata¼
7.6 mm; semipalmata¼ 8.1 mm). The ratio of bill depth at

the distal edge of nares to exposed culmen is a character

used to diagnose the 2 subspecies (.0.18 mm in

semipalmata, ,0.18 in inornata; Pyle 2008), but we found

little difference in the ratio between subspecies: semi-

palmata ¼ 0.14 mm and inornata ¼ 0.13 mm (Table 3).

PC1 explained 80% of the variation in the dataset, and PC2

explained 13% of the variation in the dataset (Figure 5,

Appendix Table 10). Both principal components were

composed of tarsus length, wing chord, and exposed

culmen, with different loading values. Based on linear

discriminant analysis, the measured morphological char-

acters predicted subspecies designations 94% of the time

(inornata ¼ 100%, semipalmata ¼ 86%).

DISCUSSION

The geographically closest breeding populations of the 2

Willet subspecies (central Texas Coast and northwest

Colorado) are separated by .1,600 km. We found no

evidence of hybridization or introgression between them.

Individuals of each subspecies clustered together based on

morphological, mitochondrial, and nuclear data, and there

was no evidence of hybridization or introgression between

the 2 subspecies. They displayed a relatively shallow 0.85%

mitochondrial sequence divergence, which supported a

divergence time of at least ~300,000 yr ago, and had 42

nuclear loci (of 4,635) with fixed differences based on our

sampling. Both subspecies have experienced an increased

effective population size (Ne) through time. The 2.5 times

TABLE 2. The demographic history of all Tringa semipalmata individuals (n ¼ 30) in our dataset based on 1,000 ultraconserved
element (UCE) loci estimated using program G-PhoCS (Gronau et al. 2011). Mean effective population size (Ne) is given for the
eastern (semipalmata) and western (inornata) subspecies; ancestral Ne is also shown. Migration is migrants per generation. The 95%
lower and higher highest probability density (HPD) values are the predictive distribution of estimates and are equivalent to
confidence intervals.

Ne semipalmata Ne inornata Ancestral Ne

Migration from
semipalmata to inornata

Migration from inornata
to semipalmata

Mean 790,616 2,004,047 694,411 2.10 3 10�4 7.69 3 10�5

95% HPD, lower 734,827 1,887,248 645,004 9.76 3 10�9 1.90 3 10�9

95% HPD, upper 846,598 2,127,420 745,366 6.56 3 10�4 2.43 3 10�4
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FIGURE 2. Results of (A) discriminant analysis of principal components (DAPC) and (B) program Structure analysis of genetic
differentiation between Tringa semipalmata subspecies inornata and semipalmata sampled in Wyoming, California, Florida
(inornata), New York, Texas (semipalmata), and Louisiana, USA (both subspecies). Tringa semipalmata semipalmata (the eastern
subspecies) individuals are in blue, and T. s. inornata (the western subspecies) individuals are in green.
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FIGURE 3. (A) The ND2 BEAST2 phylogeny of Tringa semipalmata semipalmata and T. s. inornata (sampled in Wyoming, California,
Florida [inornata], New York, Texas [semipalmata], and Louisiana [both subspecies]) and their sister species, Tringa flavipes. Posterior
probabilities are indicated at the nodes. Phylogenies with broader taxonomic sampling can be found in Appendix Figure 7. (B) ND2
haplotype network for Tringa semipalmata. Individuals with identical sequences to the individual listed on the haplotype network
can be found in Appendix Table 8.
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higher Ne and higher haplotype diversity in the inornata

subspecies likely reflects the larger breeding range of

inornata. Collectively, our data indicate that the 2 Willet

subspecies are on separate evolutionary trajectories and

have marked ecological, behavioral, morphological, and

genetic differences, consistent with their treatment as

distinct evolutionary units.

Genomic Data and Species Delimitation

The 0.85% mitochondrial sequence divergence between

the Willet subspecies is relatively shallow and does not

meet the often-implemented divergence threshold of .2%

for species-level splits (Johns and Avise 1998, Hebert et al.

2004). However, Bayesian species delimitation based on

UCEs indicates strong support for the treatment of the

FIGURE 4. Ultraconserved elements (UCEs; blue dots) of Tringa semipalmata semipalmata and T. s. inornata sampled in Wyoming,
California, Florida (inornata), New York, Texas (semipalmata), and Louisiana (both subspecies) plotted across the Zebra Finch
(Taeniopygia guttata) genome. Chromosome length is represented in megabase pairs (Mbp). The red dots represent the positions of
UCEs with fixed alleles. Chromosome names are on the y-axis.

TABLE 3. Morphological measurements for specimens of Tringa semipalmata in our genomic dataset housed at the Lousiana State
University Museum of Natural Science (LSUMZ) and University of Wyoming Museum of Vertebrates (UWYMV). Measurements are in
mm. See Table 1 for collection locality and breeding condition information.

Museum
Tringa semipalmata

subspecies
Skin catalog

number
Tissue

number Sex
Tarsus
length

Wing
chord

Exposed
culmen

Depth at
distal nares

Ratio of bill depth
at distal nares to
exposed culmen

LSUMZ inornata 156047 16877 Male 62.9 210 58.4 7.5 0.13
LSUMZ inornata 156049 16879 Male 62.0 215 58.1 6.9 0.12
LSUMZ inornata 159110 19407 Female 63.2 216 61.7 7.1 0.12
LSUMZ inornata 185324 71705 Female 62.6 208 58.6 8.1 0.14
LSUMZ inornata 185328 71709 Female 69.3 212 67.3 8.0 0.12
UWYMV inornata 2808 747 Unknown 61.9 208 58.2 7.5 0.13
UWYMV inornata 2809 748 Female 61.2 207 61.0 7.1 0.12
UWYMV inornata 2810 749 Female 62.0 211 60.1 8.2 0.12
UWYMV inornata 2812 782 Female 63.7 206 50.2 8.0 0.16
UWYMV inornata 2811 784 Male 62.1 211 57.9 7.2 0.13
LSUMZ semipalmata 151993 15556 Male 55.3 189 57.5 7.7 0.13
LSUMZ semipalmata 173598 43221 Male 52.4 192 58.0 8.3 0.14
LSUMZ semipalmata 175755 47313 Male 55.7 190 57.6 7.7 0.13
LSUMZ semipalmata 183976 61138 Male 53.9 202 51.0 7.7 0.15
LSUMZ semipalmata 185325 71706 Female 57.0 209 61.5 9.0 0.15
LSUMZ semipalmata 185326 71707 Male 55.3 204 59.8 8.1 0.14
LSUMZ semipalmata 185327 71708 Female 61.7 210 63.1 8.4 0.14
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Willet subspecies as separate species. Many studies

indicate that taxa cannot be diagnosed based solely on

genetic divergence using standard molecular clocks from a

few loci (see Lovette 2004), and this is becoming

increasingly clear through studies that use genome-scale

datasets (e.g., Ellegren et al. 2012, Dhami et al. 2016). The

differences in divergence between autosomal and Z-linked

loci demonstrate variation in divergence across the Willet

genome that would seem to preclude using a single

sequence difference threshold applied to one or a few loci

for species delimitation.

Z Chromosome Divergence

High divergence on the Z chromosome between taxa is

becoming a widespread observation in studies of genome-

wide divergence between bird species (Ellegren et al. 2012,

Lavretsky et al. 2015, Dhami et al. 2016). However, the

source of this pattern is still unclear. In birds, the male is

the homogametic sex (ZZ), whereas females are heteroga-

metic (ZW). In monogamous species with similar sex

ratios, the Ne of the Z chromosome is ł that of autosomes

(Charlesworth et al. 1987), which results in faster fixation

of new mutations and may lead to higher divergence. Even

when accounting for smaller Ne, we observed high rates of

Z chromosome divergence between Willet subspecies

relative to expected rates under purely neutral processes.

Reproductive skew in males of species with sexual

selection further reduces the Ne of the Z chromosome

and produces a faster Z effect (Charlesworth 2009,

Ellegren 2009, Wright and Mank 2013), which may explain

the observed Z chromosome divergence in Willets. Willets

are thought to be monogamous (Howe 1982), although

males engage in group displays and female behavior has

been interpreted as advertisement for extrapair copulation

(Howe 1982, Douglas 1996, Lowther et al. 2001), both of

which could promote extrapair copulations and thus

variance in male mating success that may result in faster

Z evolution (Wright et al. 2015).

Adaptive evolution also could be responsible for high

rates of Z chromosome evolution between populations, if

divergent selection is greater at Z-linked loci. Alleles at Z-

linked loci are unmasked in hemizygous females;

therefore, recessive beneficial alleles may be rapidly fixed

by positive selection relative to alleles at autosomal loci.

Differences in morphology, plumage, and behavior

between the Willet subspecies combined with their

different habitats and ecologies may be evidence of the

potential for evolution in response to natural selection in

these populations. If sexual selection is occurring and

sexually selected characteristics are Z-linked, then

adaptive evolution may occur at even higher rates in

the Z chromosome (Sæther et al. 2007, Pryke 2010,

Schroeder et al. 2010, Toms et al. 2012, Dhami et al.

2016). Male and female Willets look similar, but females

are larger on average and the sexes differ in voice and

behavior during the breeding season (Lowther et al.

2001). Overall, teasing apart the various potential causes

of higher rates of divergence on sex-linked chromosomes

is challenging (Meisel and Connallon 2013), and addi-

tional data will be required to investigate the potential for

adaptive, sex-linked divergence between Willet subspe-

cies.

FIGURE 5. Principal components analysis (PCA) of morphological characters of Tringa semipalmata semipalmata and T. s. inornata
sampled in Wyoming (inornata), California (inornata), Texas (semipalmata), and Louisiana (both subspecies). Ellipses are 95%
confidence intervals. The rotated component matrix and the standard deviation and proportion of variance explained by the
components can be found in Appendix Table 10.
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Concluding Remarks
In addition to the already recognized differences in

ecology, morphology, and song, our data show genomic

divergence between inornata and semipalmata. We found

no evidence of ongoing hybridization that would lead to

detectable levels of genetic introgression. Additional

research should explore the possibility that genetic

structure exists within 1 or both of the 2 Willet subspecies.

Our study lacked samples from Caribbean populations and

populations in many parts of the breeding ranges of both

subspecies. In addition, inornata populations show fidelity

to breeding and wintering grounds, which could lead to

geographic isolation and genetic structure. The inornata

that breed in the Great Basin wetlands show philopatry to

breeding grounds and to wintering grounds in coastal and

estuarine habitats in northern California (Haig et al 2002),

and the inornata that breed in Alberta winter in Mexico

and Costa Rica (Lowther et al. 2001, Haig et al. 2002). It is

unknown whether semipalmata also exhibit philopatry.

With regard to species status, reciprocal playback studies

in populations of both subspecies would be illuminating.
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APPENDIX FIGURE 6. Histogram of the 4,000 ultraconserved
element (UCE) loci with nonnegative FST values in our dataset for
Tringa semipalmata semipalmata and T. s. inornata sampled in
Wyoming, California, Florida (inornata), New York, Texas (semi-
palmata), and Louisiana (both subspecies).
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APPENDIX FIGURE 7. Expanded ND2 phylogenies of Tringa semipalmata semipalmata and T. s. inornata sampled in Wyoming,
California, Florida (inornata), New York, Texas (semipalmata), and Louisiana (both subspecies) and all other members of the genus
Tringa available on GenBank obtained with (A) program RAxML (Stamatakis 2014) and (B) program BEAST 2 (Bouckaert et al. 2014).
The trees are rooted with Actitis species following Pereira and Baker (2005). In (A) node support is based on 1,000 bootstrap
replicates, and in (B) posterior probabilies are shown on the nodes.
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APPENDIX FIGURE 8. Simulation (blue bars) and observed (red
line) numbers of fixed single nucleotide polymorphisms (SNPs)
on the Z chromosome of ultraconserved elements (UCEs) from
Tringa semipalmata semipalmata and T. s. inornata sampled in
Wyoming, California, Florida (inornata), New York, Texas (semi-
palmata), and Louisiana (both subspecies).

APPENDIX FIGURE 9. Simulation (blue bars) and observed (red
line) numbers of single nucleotide polymorphisms (SNPs) within
genes of ultraconserved elements (UCEs) from Tringa semi-
palmata semipalmata and T. s. inornata sampled in Wyoming,
California, Florida (inornata), New York, Texas (semipalmata), and
Louisiana (both subspecies).

APPENDIX TABLE 4. GenBank (GenInfo Identifier [GI]) numbers
and accession version from published sequence data included in
phylogenetic analyses focused on Tringa semipalmata semi-
palmata and T. s. inornata sampled in Wyoming, California,
Florida (inornata), New York, Texas (semipalmata), and Louisiana
(both subspecies) and sister taxa within the genus Tringa. Actitis
was used as an outgroup following Pereira and Baker (2005).
Species are ordered by GI number.

GI
Accession

version Genus Species Voucher no.

171919406 EU326931.1 Actitis hypoleucos
171919408 EU326932.1 Actitis hypoleucos
317017154 HM640876.1 Tringa incana UAM15181
317017156 HM640877.1 Tringa incana UAM13434
317017158 HM640878.1 Tringa incana UAM10496
317017160 HM640879.1 Tringa incana UAM8240
317017162 HM640880.1 Tringa incana UAM21813
317017164 HM640881.1 Tringa incana UAM10101
317017166 HM640882.1 Tringa incana UAM10176
317017168 HM640883.1 Tringa incana UAM10135
317017170 HM640884.1 Tringa brevipes UAM7534
317017172 HM640885.1 Tringa brevipes UAM9399
317017174 HM640886.1 Tringa brevipes UAM8805
317017176 HM640887.1 Tringa brevipes UAM9398
317017178 HM640888.1 Tringa brevipes UAM8521
317017180 HM640889.1 Tringa brevipes UAM10112
317017182 HM640890.1 Tringa brevipes UAM9402
317017184 HM640891.1 Tringa brevipes UAM9400
317017186 HM640892.1 Tringa brevipes UAM7535
317160155 HM776975.1 Tringa brevipes UAM9400
317160157 HM776976.1 Tringa incana UAM11759
317160159 HM776977.1 Tringa incana UAM13569
62720761 AY894174.1 Tringa brevipes
62720763 AY894175.1 Tringa erythropus
62720765 AY894176.1 Tringa flavipes
62720767 AY894177.1 Tringa glareola
62720771 AY894179.1 Tringa incana
62720773 AY894180.1 Actitis macularius
62720775 AY894181.1 Tringa melanoleuca
62720777 AY894182.1 Tringa nebularia
62720779 AY894183.1 Tringa ochropus
62720781 AY894184.1 Tringa solitaria
62720783 AY894185.1 Tringa stagnatilis
62720785 AY894186.1 Tringa totanus
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APPENDIX TABLE 5. Ultraconserved element (UCE) position of the 43 fixed single nucleotide polymorphisms (SNPs) of UCEs from
Tringa semipalmata semipalmata and T. s. inornata sampled in Wyoming, California, Florida (inornata), New York, Texas
(semipalmata), and Louisiana (both subspecies) on Zebra Finch (Taeniopygia guttata) chromosomes and Killdeer scaffolds. A scaffold
is a series of contigs (contiguous sequences of DNA created by assembling overlapping sequenced fragments of a chromosome) and
gaps that are in order but not necessarily connected in one continuous stretch of DNA sequence.

Locus
Position of
fixed SNP

Killdeer Zebra Finch

Scaffold Start End Chromosome Start End

UCE 1497 70 NW_009648332.1 13298149 13298591 8 12173238 12172794
UCE 1631 472 NW_009648876.1 5870120 5870908 5 34871227 34872009
UCE 1787 627 NW_009648822.1 127284 127977 Z 13991263 13990589
UCE 1867 635 NW_009648876.1 5865681 5866382 5 34866848 34867570
UCE 1893 69 NW_009648822.1 386277 387021 Z 13744711 13744181
UCE 204 483 NW_009648250.1 4565871 4565319 Z 66511997 66512415
UCE 2051 70 NW_009661372.1 3210017 3210695 Z 22281436 22280824
UCE 2274 539 NW_009648712.1 3517479 3516724 2 109848860 109848088
UCE 2350 130 NW_009646761.1 2811102 2810340 1 39545671 39546386
UCE 2439 94 NW_009648252.1 878242 878534 Z 14684681 14684364
UCE 2845 453 NW_009649167.1 1794457 1793655 1 52271517 52270706
UCE 3104 671 NW_009648550.1 3938161 3937426 3 26901769 26902512
UCE 3181 505 NW_009646851.1 1967510 1966948 Z 46067413 46066982
UCE 3303 247 NW_009649706.1 1018126 1017522 Z 63206111 63206721
UCE 3314 177 NW_009661368.1 1665502 1664995 20 14057679 14057994
UCE 3381 70 NW_009648332.1 13582630 13582034 8 11900059 11900614
UCE 3471 350 NW_009648440.1 1974427 1974966 2 45549917 45550446
UCE 4098 527 NW_009648573.1 9021 9613 2 24764958 24764364
UCE 4143 670 NW_009648526.1 4519092 4519867 10 5701081 5700335
UCE 4733 103 NW_009648822.1 464976 465501 Z 13684125 13683641
UCE 4912 70 NW_009649040.1 484740 485414 2 25212227 25212812
UCE 5185 600 NW_009650176.1 2222294 2223078 6 34889906 34889323
UCE 5361 256 NW_009648250.1 2601515 2602215 Z 56512247 56512949
UCE 5456 524 NW_009647830.1 6430281 6429690 1A 41125292 41125886
UCE 5510 53 NW_009649572.1 58285 57741 Z 72670911 72670331
UCE 5576 535 NW_009648332.1 19776264 19776854 8 6333620 6333018
UCE 5821 538 NW_009660184.1 1510248 1509479 3 98873781 98873027
UCE 5829 64 NW_009649614.1 914873 914635 Z 53372952 53372433
UCE 5910 469 NW_009649951.1 2201075 2201659 Z 60225046 60224468
UCE 5956 404 NW_009650173.1 3762957 3763443 5 2669299 2668829
UCE 5956 419 NW_009650173.1 3762957 3763443 5 2669299 2668829
UCE 6242 142 NW_009648876.1 9205163 9204322 5 37935757 37935061
UCE 6390 309 NW_009649951.1 2037676 2038317 Z 60381755 60381100
UCE 6574 515 NW_009646428.1 246989 247568 Z 54001327 54000748
UCE 6800 45 NW_009646928.1 1838979 1838365 7 16238340 16238932
UCE 6826 436 NW_009650072.1 4223083 4223813 5 10817538 10816950
UCE 6915 581 NW_009649951.1 2246292 2245682 Z 60189699 60190278
UCE 694 139 NW_009648252.1 1418184 1417677 Z 14179514 14180013
UCE 6988 129 NW_009650060.1 2668146 2668871 7 34517856 34517241
UCE 7363 74 NW_009646936.1 1740170 1740705 1 98112113 98111666
UCE 7678 650 NW_009649193.1 214560 213838 3 110412021 110411197
UCE 7981 146 NW_009649706.1 1301179 1301933 Z 62937216 62936501
UCE 7985 242 NW_009647874.1 2898318 2897445 1 29511791 29511027
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APPENDIX TABLE 6. Number of populations (K), number of replicates, mean log-likelihood scores, log-likelihood standard deviation
(SD), first- and second-order likelihood rate of change, and DK values for K¼1–5 as determined by program Structure (Pritchard et al.
2000) for the complete Tringa semipalmata dataset.

K Replicates Mean LnP(K) SD LnP(K) Ln’(K) jLn’’(K)j DK

1 10 �320,962.2 6,068.3 NA NA NA
2 10 �264,330.2 16.7 56,632.0 76,298.1 4,582.5
3 10 �283,996.3 5,524.8 �19,666.1 15,147.6 2.7
4 10 �288,514.8 43,364.9 �4,518.6 99,083.2 2.3
5 10 �392,116.6 269,997.8 �103,601.7 NA NA

APPENDIX TABLE 7. Number of populations (K), number of replicates, mean log-likelihood scores, log-likelihood standard deviation
(SD), first- and second-order likelihood rate of change, and DK values for K¼1–5 as determined by program Structure (Pritchard et al.
2000) for the (A) Tringa semipalmata inornata and (B) T. s. semipalmata datasets.

K Replicates Mean LnP(K) SD LnP(K) Ln’(K) jLn’’(K)j DK

(A) inornata
1 10 �185,721.9 30.3 NA NA NA
2 10 �548,888.8 606,091.4 �363,166.9 603,425.9 1.0
3 10 �308,629.8 55,330.7 240,259.0 289,277.7 5.2
4 10 �357,648.4 123,007.9 �49,018.7 166,622.1 1.4
5 10 �573,289.2 283,514.4 �215,640.8 NA NA

(B) semipalmata
1 10 �80,260.6 20.4 NA NA NA
2 10 �83,852.7 2,451.2 �3,592.1 8,095.1 3.3
3 10 �95,539.9 14,835.0 �11,687.2 28,158.4 1.9
4 10 �135,385.5 43,586.0 �39,845.6 134,611.3 3.1
5 10 �309,842.4 141,827.7 �174,456.9 NA NA
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0APPENDIX TABLE 8. Identical ND2 sequences represented by
node size in the haplotype network of Tringa semipalmata. The
U.S. state in which the individual was collected follows the
subspecies name: LA ¼ Louisiana, NY ¼ New York, TX ¼ Texas,
and CA ¼ California.

Node label Matching sequences

62980 Tringa
semipalmata
semipalmata LA

15556 Tringa semipalmata semipalmata LA
5966 Tringa semipalmata semipalmata NY
47313 Tringa semipalmata semipalmata TX
71706 Tringa semipalmata semipalmata LA
71707 Tringa semipalmata semipalmata LA
71708 Tringa semipalmata semipalmata LA
5967 Tringa semipalmata semipalmata NY

9786 Tringa
semipalmata
inornata CA

16879 Tringa semipalmata inornata CA
27058 Tringa semipalmata inornata CA
16877 Tringa semipalmata inornata CA

9837 Tringa
semipalmata
inornata CA

24764 Tringa semipalmata inornata CA
71709 Tringa

semipalmata
inornata LA

None (Unique sequence)
19407 Tringa

semipalmata
inornata LA

None (Unique sequence)
43221 Tringa

semipalmata
semipalmata LA

None (Unique sequence)
5985 Tringa

semipalmata
semipalmata NY

None (Unique sequence)
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APPENDIX TABLE 10. (A) Rotated component matrix and (B)
standard deviation and proportion of variance of components
from principal components analysis (PCA) of morphological
characters of Tringa semipalmata semipalmata and T. s. inornata
sampled in Wyoming (inornata), California (inornata), Texas
(semipalmata), and Louisiana (both subspecies).

PC1 PC2 PC3 PC4 PC5

(A) Trait measured
Tarsus length �0.4 �0.2 �0.9 0.0 0.0
Wing chord �0.9 0.3 0.4 0.0 0.0
Exposed culmen �0.2 �0.9 0.3 �0.0 �0.0
Depth of distal nares 0.0 �0.0 0.0 1.0 0.0
Ratio of depth of distal

nares to exposed culmen 0.0 0.0 0.0 0.0 �1.0
(B) Importance of components

Standard deviation 9.1 3.7 2.6 0.5 0.0
Proportion of variance 0.8 0.1 0.1 0.0 0.0
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