BioOne COMPLETE

A revised classification of the Xolmiini (Aves: Tyrannidae: Fluvicolinae), including a new genus for Muscisaxicola fluviatilis

Authors: Chesser, R. Terry, Harvey, Michael G., Brumfield, Robb T., and Derryberry, Elizabeth P.

Source: Proceedings of the Biological Society of Washington, 133(1) : 35-48

Published By: Biological Society of Washington

URL: https://doi.org/10.2988/20-00002

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at www.bioone.org/terms-of-use.

Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

A revised classification of the Xolmiini (Aves: Tyrannidae: Fluvicolinae), including a new genus for Muscisaxicola fluviatilis

R. Terry Chesser ${ }^{1,2}$, Michael G. Harvey ${ }^{3}$, Robb T. Brumfield ${ }^{4}$, and Elizabeth P. Derryberry ${ }^{3}$
${ }^{1}$ U.S. Geological Survey, Patuxent Wildlife Research Center, 12100 Beech Forest Drive, Laurel, MD 20708, USA
${ }^{2}$ Division of Birds, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, P. O. Box 37012, Washington, DC 20013, USA
${ }^{3}$ Department of Ecology and Evolutionary Biology, 569 Dabney Hall, University of Tennessee, Knoxville, TN 37996, USA
${ }^{4}$ Museum of Natural Science and Department of Biological Sciences, 119 Foster Hall, Louisiana State University Baton Rouge, LA 70803, USA

Abstract.-Recent studies using molecular phylogenetics have provided new insight into the composition of and relationships among species in the avian tribe Xolmiini. Key findings include the paraphyly of Xolmis, including the exclusion of X. dominicanus from the Xolmiini, and the apparent paraphyly of Muscisaxicola. We provide a revised classification of the Xolmiini, including a new genus for Muscisaxicola fluviatilis, based on the recent phylogenetic results.

Keywords: Xolmis, Cnemarchus, tyrant-flycatcher, Tyrannidae, suboscine, systematics

The avian tribe Xolmiini (Tello et al. 2009) is a clade of South American birds found mainly in open country in the southern part of the continent, the Andes, and the northern non-Andean highlands, although a few species inhabit Amazonian or other tropical lowlands. The group includes the genera Lessonia Swainson, 1832 (the negritos); Knipolegus Boie, 1826 (black-tyrants); Hymenops Lesson, 1828 (Spectacled Tyrant); Satrapa Strickland, 1844 (Yellow-browed Tyrant); Muscisaxicola Orbigny \& Lafresnaye, 1837 (groundtyrants); Cnemarchus Ridgway, 1905, Polioxolmis Lanyon, 1986, and Myiotheretes Reichenbach, 1850 (bush-tyrants); Xolmis Boie, 1826, and Neoxolmis Cory and Hellmayr, 1927 (monjitas); and Agriornis Gould, 1839 (shrike-tyrants). Tello et al. (2009) sequenced the nuclear genes RAG-1

[^0]and RAG-2 for 13 of the 49 species of the Xolmiini ($1-2$ species per genus) as part of a genus-level study of the Tyrannides. They determined that this group of genera forms a clade, and they further divided the clade into two subgroups, one consisting of Lessonia, Knipolegus, and Hymenops (termed the Knipolegus group), the other of the remaining genera (Xolmis group).

Fjeldså et al. (2018) conducted a more comprehensive molecular study of the group, sequencing two mitochondrial genes and four nuclear introns for 43 species of Xolmiini as part of a study of the tyrannid subfamily Fluvicolinae. Broadly speaking, their results supported the monophyly of the group, but Xolmis dominicanus was determined to be only distantly related to the Xolmiini, nesting instead within the tribe Fluvicolini (sensu Tello et al. 2009). Further, their results suggested that Muscisaxicola was sister to
the rest of the Xolmiini (albeit with weak support) and that Satrapa icterophrys grouped with the Knipolegus group of Tello et al. (2009) rather than with the remainder of their Xolmis group (although again with weak support).

As part of a larger phylogenetic project on suboscine birds, Harvey et al. (in review) sequenced loci surrounding 2,389 ultraconserved elements (UCEs) and conserved exons for 48 of the 49 species of Xolmiini (all except Neoxolmis salinarum; Appendix 1). Detailed methods are described in that study, but, in brief, sequences were assembled using a pipeline based on Phyluce (Faircloth 2016) and two sets of alignments were examined: one with minimal filtering for missing data (T400F), and another with more extensive alignment filtering (HGAPF) using GBLOCKS (Castresana 2000). Phylogenies were estimated using concatenated datasets in ExaML (Kozlov et al. 2015) with 100 bootstrap replicates to evaluate support, and time-calibrated using a penalized likelihood approach (Smith and O'Meara 2012) combined with published fossil records. A summary species-tree method, ASTRAL III (Zhang et al. 2017), was also used, with tips missing from more than 250 loci removed to avert spurious placement.

Harvey et al. (in review) found the Xolmiini to form a clade exclusive of X. dominicanus, but in their phylogeny, the grouping Muscisaxicola + Satrapa was sister to the remaining species. Moreover, two genera, Xolmis and Muscisaxicola, were paraphyletic in their trees. Below we examine the results of Harvey et al. (in review) and prior studies in greater detail. We focus on the primary tree of Harvey et al. (in review), the ExaML T400F tree (Fig. 1, Appendix 2a), but also examine support for key results in the ExaML HGAPF tree (Appendix 2b) and the ASTRAL tree from the T400F alignments (Appendix 2c). We address the paraphyly of Xolmis and Muscisaxicola, consider the evidence for subsuming Polioxolmis into

Cnemarchus, and present a revised classification of the Xolmiini.

Xolmis.-Xolmis consists of species of open and semi-open country of southern and central South America, but the constituency and classification of the genus have long been unsettled, largely owing to the questionable status of species sometimes placed in Xolmis but at other times placed in Agriornis, Neoxolmis, Pyrope, Myiotheretes, or Heteroxolmis. Cory and Hellmayr (1927) considered Xolmis to consist of eight species (Table 1), including one species (murinus) now universally included in Agriornis (following Vuilleumier in Smith and Vuilleumier 1971), and they described the genus Neoxolmis for a closely related species, rufiventris, which is still routinely placed in Neoxolmis. Recognition of the genus Pyrope Cabanis and Heine, 1859, for pyrope found favor in regional monographs during a brief time period (e.g., Meyer de Schauensee 1966, Johnson and Goodall 1967, Humphrey et al. 1970), but Pyrope has not been recognized by most general references (Table 1). Vuilleumier (in Smith and Vuilleumier 1971), in addition to transferring murina to Agriornis, expanded Xolmis to include six species considered by Cory and Hellmayr (1927) to belong to Cnemarchus, Myiotheretes, and Ochthodiaeta, but this has not been adopted by other references. Traylor (1979) expanded Neoxolmis to include rubetra; this was adopted by Lanyon (1986) but has also not been followed by others (Table 1). Heteroxolmis Lanyon, 1986, was described for dominicanus, which differs from other species of Xolmis in syringeal and nasal morphology (Lanyon 1986), and this has been followed by some sources. Most recent references have assigned $7-8$ species (type species X. irupero, X. velatus, X. pyrope, X. cinereus, X. coronatus, X. rubetra, X. salinarum, and sometimes X. dominicanus) to Xolmis (Table 1).

Molecular phylogenies have provided new insights into the systematics of Xolmis

Fig. 1. A phylogeny of the Xolmiini excerpted from the tree of Harvey et al. (in review). This is the ExaML tree from concatenated sequences after minimal filtering for missing data (T400F), dated using TreePL (Smith and O'Meara 2012) and fossil calibrations. Asterisks denote bootstrap support of 100%.
and its close relatives. Tello et al. (2009) sampled only a single species of Xolmis (pyrope) and placed it as sister to their representatives of Agriornis, Neoxolmis, and Myiotheretes, but Fjeldså et al. (2018) sampled seven species of Xolmis (all species except salinarum) and determined that Xolmis is polyphyletic. As noted above, X. dominicanus was found to be only distantly related to the rest of Xolmis, instead grouping with Alectrurus risora and Gubernetes yetapa in the Fluvicolini, another tribe within the subfamily

Fluvicolinae. The other six species occupied two slightly different parts of the Xolmiini. One group, consisting of type species X. irupero, X. velatus, and X. pyrope, was sister to Agriornis, Myiotheretes, Neoxolmis rufiventris, and the remaining species of Xolmis; within this group, X. irupero was strongly supported as sister to X. velatus, and X. pyrope was sister to these, although with weak support. Myiotheretes, Neoxolmis rufiventris, and the remaining species of Xolmis formed a four-fold polytomy that was sister to
Table 1.-Selected modern classifications of species of Xolmis and possible close relatives.

Species epithet	Cory and Hellmayr (1927)	Vuilleumier in Smith and Vuilleumier (1971)	$\begin{gathered} \text { Traylor } \\ (1979) \end{gathered}$	$\begin{gathered} \text { Lanyon } \\ (1986) \end{gathered}$	$\begin{aligned} & \text { Ridgely and } \\ & \text { Tudor } \\ & (1994)^{*} \end{aligned}$	$\begin{aligned} & \text { Remsen et al. } \\ & (2019)^{* *} . \end{aligned}$	$\begin{gathered} \text { Ohlson et al. } \\ (2020) \end{gathered}$	this paper
velatus	Xolmis							
irupero	Xolmis							
pyrope	Xolmis	Xolmis	Xolmis	Xolmis	Xolmis	Xolmis	Pyrope	Pyrope
cinereus	Xolmis	Xolmis	Xolmis	Xolmis	Xolmis	Xolmis	Nengetus	Nengetus
coronatus	Xolmis	Xolmis	Xolmis	Xolmis	Xolmis	Xolmis	Nengetus	Nengetus
rubetra	Xolmis	Xolmis	Neoxolmis	Neoxolmis	Xolmis	Xolmis	Nengetus	Nengetus
salinarum***					Xolmis	Xolmis	Nengetus	Nengetus
rufiventris	Neoxolmis	Neoxolmis	Neoxolmis	Neoxolmis	Neoxolmis	Neoxolmis	Nengetus	Nengetus
murinus	Xolmis	Agriornis						
dominicanus	Xolmis	Xolmis	Xolmis	Heteroxolmis	Heteroxolmis	Xolmis	Heteroxolmis	Heteroxolmis
rufipennis	Cnemarchus	Xolmis	Myiotheretes	Polioxolmis	Polioxolmis	Polioxolmis	Cnemarchus	Cnemarchus
erythropygius	Cnemarchus	Xolmis	Myiotheretes	Cnemarchus	Cnemarchus	Cnemarchus	Cnemarchus	Cnemarchus
striaticollis	Myiotheretes	Xolmis	Myiotheretes	Myiotheretes	Myiotheretes	Myiotheretes	Nengetus	Myiotheretes
pernix	Ochthodiaeta	Xolmis	Myiotheretes	Myiotheretes	Myiotheretes	Myiotheretes	Nengetus	Myiotheretes
fumigatus	Ochthodiaeta	Xolmis	Myiotheretes	Myiotheretes	Myiotheretes	Myiotheretes	Nengetus	Myiotheretes
fuscorufus	Ochthodiaeta	Xolmis	Myiotheretes	Myiotheretes	Myiotheretes	Myiotheretes	Nengetus	Myiotheretes

[^1]Agriornis: all species of Myiotheretes formed one part of this polytomy, Neoxolmis $+X$. rubetra another part, and X. cinereus and X. coronatus the third and fourth parts, respectively. Ohlson et al. (2020) proposed a new classification based on the phylogenetic results of Fjeldsa et al. (2018). Changes included the restriction of Xolmis to irupero and velatus; the resurrection of Pyrope for pyrope; the resurrection of Nengetus Swainson, 1827, for cinereus, coronatus, rubetra, salinarum, rufiventris, and the four species of Myiotheretes; and the subsuming of Polioxomis into Cnemarchus (Table 1).

The primary phylogeny of Harvey et al. (in review) supported the placement of X. dominicanus outside of the Xolmiini (as in Fjeldså et al. 2018) and as sister to Alectrurus (Appendix 2a), which necessitates the transfer of this species to Heteroxolmis. The remaining species of Xolmis, however, did not form a polyphyletic group, but instead formed a paraphyletic grade (along with N. rufiventris) basal to sister taxa Myiotheretes and Agriornis (Fig. 1). Xolmis rubetra, X. coronatus, and X. cinereus, together with N. rufiventris (which was sister to X. rubetra), formed a clade that was sister to Myiotheretes + Agriornis, and X. pyrope and X. velatus + X. irupero were successive sisters to this clade (i.e., Myiotheretes, Agriornis, N. rufiventris, and the other three species of Xolmis). Most nodes in this part of the tree received strong bootstrap support ($90-$ 100%), but the node uniting pyrope with its sister group was weakly supported (48%). The tree based on heavily filtered alignments (HGAPF) contained similar relationships to the primary (T400F) tree, but placed the divergence leading to X. pyrope deeper than that leading to X. velatus $+X$. irupero (Appendix 2b). Again, the relationship between X. velatus $+X$. irupero and its sister group was weakly supported (63% bootstrap). The T400F Astral tree (Appendix 2c) supported the primary T 400 F tree in this part of the
topology but with a weak local posterior probability (0.67). Astral relationships deeper in the clade may have been spuriously driven by high levels of missing data in the samples of A. lividus (missing from 226 loci), M. striaticollis (224 loci), and M. pernix (138 loci). Despite uncertainty in the relative timing of the divergences involving the branches leading to X. pyrope and X. velatus $+X$. irupero, the paraphyly of Xolmis is unambiguous.

Lack of a monophyletic Xolmis necessitates a change in the classification of this section of the Xolmiini, and the sister relationship of Agriornis and Myiotheretes precludes adoption of the classification of Ohlson et al. (2020), who retained Agriornis while subsuming Myiotheretes into Nengetus. One option would be to merge all species of Xolmis, Neoxolmis, Myiotheretes, and Agriornis into a single genus, for which Xolmis has priority. The depth of the node uniting these genera is roughly the same as those uniting Knipolegus and Muscisaxicola (excluding M. fluviatilis see below). However, Knipolegus and Muscisaxicola are extremely conservative genera phenotypically, whereas Xolmis, Neoxolmis, Myiotheretes, and Agriornis encompass a much wider range of phenotypic variation, reducing the appeal of this option. Another option, in sharp contrast to the previous alternative, would be to retain Agriornis and Myiotheretes and apportion the species currently in Xolmis and Neoxolmis into five genera: Xolmis for irupero and velatus; Pyrope for pyrope; Nengetus for cinereus; a new genus for coronatus; and Neoxolmis for rufiventris, rubetra, and salinarum. This would result in three monotypic genera and two others containing two and three species, respectively, which seems excessively split considering that these species have generally been placed in two genera, and all but one generally in the single genus Xolmis. A third option would be to retain Agriornis and Myiotheretes, either as separate genera or as a single genus (Agriornis), but to limit
the division of Xolmis to the minimum required by the principle of monophyly of genera. This would result in the division of Xolmis into three genera: Xolmis for irupero and velatus, Pyrope for pyrope, and Nengetus for rufiventris, rubetra, salinarum, coronatus, and cinereus. Except for their subsuming of Myiotheretes into Nengetus, this is the classification adopted by Ohlson et al. (2020). We recommend the five-genus version of the third option above, which splits Xolmis into three genera while retaining Agriornis and Myiotheretes as separate genera. This option would also result in the least disruption to the current classification, thereby promoting taxonomic stability.

Muscisaxicola.-Muscisaxicola is a genus of ground-dwelling tyrant-flycatchers endemic to South America. Twelve of the 13 species are typically found in open habitats of the high Andes and Patagonia, but the thirteenth species, M. fluviatilis, occurs in the lowlands of Amazonia, where it is found on sandbars along watercourses. A complete phylogeny of the genus based on two mitochondrial genes showed that most species of Muscisaxicola form a tight, distinct, well-supported clade, termed the "typical clade" (Chesser 2000). However, two species, M. fluviatilis and M. maculirostris, were found to be rather distantly related to the other species and of somewhat uncertain affinities, although M. maculirostris was a weakly supported sister to the typical clade in all analyses. Relationships of M. fluviatilis were especially poorly resolved, and in some analyses it was sister to one of the outgroup species rather than to the other species of Muscisaxicola.

Fjeldså et al. (2018) sampled M. maculirostris, M. Aluviatilis, and nine of the 11 typical species of Muscisaxicola in their study of the Fluvicolinae. As in Chesser (2000), all typical species formed a tight, well-supported clade. Muscisaxicola maculirostris was strongly supported as sister to this clade. However, M.
fluviatilis was only distantly related to the other species. It was sister to the rest of Muscisaxicola, but this sister relationship received poor support (ca. 0.60 posterior probability).

Harvey et al. (in review) sequenced all species of Muscisaxicola in their genomic study of suboscine birds. They found that the 11 typical species of Muscisaxicola formed a well-supported clade and that M. maculirostris was sister to this clade, confirming previous results. However, M. fluviatilis, rather than grouping loosely with the other species of Muscisaxicola, was sister to Satrapa icterophrys (Fig. 1). The latter species had not been included in Chesser (2000) but was included in Fjeldså et al. (2018), where its relationships were unresolved. Bootstrap support for the M. fluviatilis-Satrapa sister relationship was strong if not overwhelming (90%). In the tree based on heavily filtered alignments (HGAPF), the support for this relationship was 79% (Appendix 2b). Satrapa was not present in the T400F Astral tree as it lacked data from 445 loci, but M. Aluviatilis was sister to a long branch subtending the remainder of Muscisaxicola (Appendix 2c).

Based on the molecular results of Chesser (2000), Fjeldså et al. (2018), and Harvey et al. (in review), it seems clear that M. fluviatilis is only distantly related to true Muscisaxicola. It is also distinct, both genetically and morphologically, from its apparent sister species S. icterophrys. The depth of the node uniting M. fluviatilis and S. icterophrys, estimated at ca. 7 mya, is much deeper than the node uniting all other species of Muscisaxicola, and it is also deeper than the nodes uniting all other genera in the Xolmiini (Fig. 1). Moreover, the habitat, behavior, and predominantly yellow and olive plumage of S. icterophrys are unlike that of any species of Muscisaxicola, including M. fluviatilis, making transfer of fluviatilis to Satrapa untenable. Therefore, we describe a new genus for M. fluviatilis below.

Syrtidicola genus nov. Chesser, Harvey, Brumfield, and Derryberry

Type species.-Muscisaxicola fluviatilis Sclater and Salvin, 1866.

Included species.-Syrtidicola fluviatilis (Sclater and Salvin, 1866) comb. nov., Little Ground-Tyrant.

Diagnosis, morphology.-Small passerine birds, typically $13-14 \mathrm{~cm}, 12-15 \mathrm{~g}$. Plumage grayish-brown above, off-white below, slightly darker on breast. Wings brown, edged rufous; tail blackish; indistinct buffy superciliary; thin black bill. Distinguished from the very similar Muscisaxicola maculirostris ($14-15 \mathrm{~cm}, 12.5-$ 16.5 g) by reduced superciliary, proportionately shorter tail, and slightly smaller average size. Distinguished from all other former congeners in Muscisaxicola by notably smaller size: shorter overall length (13-14 vs. 15-21.5 cm); shorter wing, tail, and bill lengths; and smaller body mass ($12-15$ vs. $17-62$ g). Probable phylogenetic sister species Satrapa icterophrys easily distinguished from S. fluviatilis by its bright yellow breast and superciliary and dark olive back.

Etymology.-The generic name, from the stem of the genitive syrtidos (sandbar or sandbank) Latinized from Greek and the Latin cola (dweller), when combined with the species name fluviatilis (riverine), indicates that this species inhabits sandbars along rivers. The name is masculine in gender.

Molecular analyses.-Genomic analyses of all species of tyrant-flycatcher suggested that Syrtidicola is sister to Satrapa icterophrys, and that, together, these two genera are sister to Muscisaxicola. For detailed methods see Harvey et al. (in review).

Registration.-This name has been registered in ZooBank with registration number urn:lsid:zoobank.org:act:5F57D603-8C98-4F5F-8976-8FA375D9BAC1.

Cnemarchus and Polioxolmis.-Cnemarchus erythropygius and Polioxolmis rufipennis are sisters in the Harvey et al. (in review) phylogeny, but the depth of the node uniting them suggests, based solely on the phylogenetic data, that they could either continue to be placed in separate monotypic genera or that Polioxolmis could be subsumed into Cnemarchus (Fig. 1). The depth of this node is similar in the trees based on both minimally (T400F) and heavily (HGAPF) filtered datasets (Appendix 2b; Cnemarchus was missing from the T400F Astral tree). Some phenotypic similarities also suggest a single genus as a valid option, although the two species differ in plumage, morphometrics, and proportions. Both species occupy montane scrub and low woodland in the high Andes, C. erythropygius from Colombia south to Bolivia and P. rufipennis from Peru south to Chile and Argentina, and both typically forage by dropping to the ground from a perch. Both species are rather strikingly plumaged for the Tyrannidae although in quite different ways. The plumage of P. rufipennis, when perched, is a rather uniform gray, but in flight it has conspicuous rufous wing and tail patches. Cnemarchus erythropygius, a slightly larger species, is among the most colorful of tyrant-flycatchers, its plumage highlighted by its rufous belly, tail patches, and underwing coverts; its whitish crown; and its conspicuous white wing patches.

Generic placement of the two species has varied. Polioxolmis rufipennis (Taczanowski, 1874) was originally described in Muscisaxicola and C. erythropygius (Sclater, 1853) in Taenioptera (= Xolmis), but erythropygius has been placed regularly in Myiotheretes (e.g., Sclater 1888, Meyer de Schauensee 1966, Traylor 1979) and rufipennis occasionally so (e.g., Traylor 1979). Ridgway (1905) noted the distinctiveness of erythropygius from Myiotheretes and described the genus Cnemarchus for it based on its much smaller bill, relatively longer tarsus, lack of primary emargina-
tion, proportionately longer tail, rufous rump, and lack of rufous coloration in its wings. Cory and Hellmayr (1927) recognized Cnemarchus and included rufipennis in the genus in addition to erythropygius, considering rufipennis closer to Cnemarchus than to any other genus, despite its "somewhat longer second primary and much more elongated bill" (p. 39). They were the first to treat the two species as an exclusive group. The two species were later paired as a species group in Vuilleumier's (in Smith and Vuilleumier 1971) greatly expanded genus Xolmis, separated from other species by the combination of "relatively narrower bill, relatively longer tarsus, and longer claw of hallux" (p. 195). Nevertheless, Vuilleumier did not consider the two species to be particularly closely related.

Lanyon (1986) found that erythropygius, rufipennis, and the four species of Myiotheretes (striaticollis, pernix, fumigatus, fuscorufus) formed a clade within his larger Muscisaxicola group, but found three unique characters in each of erythropygius and rufipennis and could not determine relationships among erythropygius, rufipennis, and the four species of Myiotheretes, which together formed a trichotomy in his phylogenetic tree. This persuaded him to recognize Myiotheretes for the four species and Cnemarchus for erythropygius, and to describe the new genus Polioxolmis for rufipennis, based on its strongly differentiated syrinx. Most recent references have recognized Polioxolmis, although Ohlson et al. (2020) subsumed Polioxolmis into Cnemarchus (Table 1).

In the Harvey et al. (in review) phylogeny (Fig. 1), the depth of the node uniting erythropygius and rufipennis is shallower (at approx. 3.75 mya) than the depth of the nodes uniting species of most larger genera of Xolmiini, including Muscisaxicola (whether excluding or including fluviatilis), Knipolegus, and Neoxolmis (as redefined above), which range from approx. 4.5-7 mya, as well as several internal nodes
within these genera. However, the depth of the node uniting erythropygius and rufipennis is deeper than the depth of the nodes uniting species of Agriornis and species of Myiotheretes, respectively (each ca. 3.5 mya), although it is slightly shallower than that for the node uniting Agriornis with Myiotheretes (4 mya). Thus, as with the morphology, a case can be made either for placing erythropygius and rufipennis in a single genus or placing them in two monotypic genera. We recommend following the lead of Cory and Hellmayr (1927) and placing both species in Cnemarchus. Congeneric status emphasizes their similarities in habitat, range, behavior, bill width, and certain aspects of plumage (e.g., rufous tail patches), as well as their phylogenetic relationship as sister species.

Revised classification of the Xolmiini.The following classification adopts the recommendations above and follows standard procedures for converting phylogenies into linear sequences (e.g., Remsen et al. 2019). Type species of polytypic genera are designated with an asterisk. Neoxolmis salinarum, not sequenced by Harvey et al. (in review), is placed to follow its obvious sister species N. rubetra.

Satrapa

icterophrys
Syrtidicola
fluviatilis
Muscisaxicola
maculirostris
albifrons
flavinucha
alpinus
griseus
rufivertex*
cinereus
maclovianus
albilora
capistratus
juninensis
frontalis
Lessonia

oreas
rufa*
Hymenops
perspicillatus
Knipolegus
cyanirostris*
signatus
cabanisi
striaticeps
aterrimus
hudsoni
poecilurus
orenocensis
poecilocercus
lophotes
franciscanus
nigerrimus
Cnemarchus
erythropygius*
rufipennis
Xolmis
velatus
irupero*
Pyrope
pyrope
Nengetus
cinereus*
coronatus
rubetra
salinarum
rufiventris
Myiotheretes
striaticollis*
fuscorufus
pernix
fumigatus
Agriornis
montanus
murinus
albicauda
micropterus*
lividus

Acknowledgments

We thank Normand David for his assistance in formulating the scientific name Syrtidicola; Van Remsen, Neal Woodman, Ryan Terrill, and an anony-
mous reviewer for helpful comments on the manuscript; and Graham Derryberry, Gustavo Bravo, and Santiago Claramunt for assistance with the phylogenetic tree. Funding was provided by US National Science Foundation grants DEB-1146265 (to R.T.B.), DEB-1146423 (to E.P.D.), IOS-1210556 (to M.G.H. and R.T.B.), and DBI-1523893 (to M.G.H.). Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Literature Cited

Castresana, J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17:540-552.
Chesser, R. T. 2000. Evolution in the high Andes: the phylogenetics of Muscisaxicola ground-tyrants. Molecular Phylogenetics and Evolution 15:369-380.
Cory, C. B., \& C. E. Hellmayr. 1927. Catalogue of birds of the Americas and the adjacent islands, Part V, Tyrannidae. Field Museum of Natural History, Zoological Series, Vol. 13.
del Hoyo, J., A. Elliott, J. Sargatal, D. A. Christie, \& G. Kirwan (eds.). 2019. Handbook of the birds of the world alive. Lynx Edicions, Barcelona. (retrieved from http://www.hbw. com/ on 10 October 2019)
Dickinson, E.C., \& Christidis, L. (eds.) 2014. The Howard and Moore complete checklist of the birds of the world, 4th Edition, Vol. 2: Passerines. Aves Press, Eastbourne, U.K.
Faircloth, B.C. 2016. PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics 32:786-788.
Fjeldså, J., J. I Ohlson, H. Batalha-Filho, P. G. P. Ericson, \& M. Irestedt. 2018. Rapid expansion and diversification into new niche space by fluvicoline flycatchers. Journal of Avian Biology 2018: e01661.
Gill, F. B., and D. Donsker (eds.). 2019. IOC World Bird List (v9.2). doi : 10.14344/IOC.ML.9.2. (last accessed on 10 October 2019)
Harvey, M. G., G. A. Bravo, S. Claramunt, A. M. Cuervo, G. E. Derryberry, J. Battilana, G. F. Seeholzer, J. S. McKay, B. C. O'Meara, B. C. Faircloth, S. V. Edwards, J. Pérez-Emán, R. G. Moyle, F. H. Sheldon, A. Aleixo, B. T. Smith, R. T. Chesser, L. F. Silveira, J. Cracraft, R. T. Brumfield, \& E. P. Derryberry.
in review. The evolution of a tropical biodiversity hotspot. Science
Humphrey, P. S., D. Bridge, P. W. Reynolds, \& R. T. Peterson. 1970. Birds of Isla Grande (Tierra del Fuego). Smithsonian Institution, Washington.
Johnson, A. W., \& J. D. Goodall. 1967. The birds of Chile and adjacent regions of Argentina, Bolivia, and Peru, Vol. II. Platt Estableciementos Gráficos, Buenos Aires.
Kozlov, A. M., A. J. Aberer, \& A. Stamatakis. 2015. ExaML version 3: a tool for phylogenomic analysis on supercomputers. Bioinformatics 31:2577-2579.
Lanyon, W. E. 1986. A phylogeny of the thirty-three genera in the Empidonax assemblage of tyrant flycatchers. American Museum Novitates 2846:1-64.
Meyer de Schauensee, R. 1966. The species of birds of South America and their distribution. Academy of Natural Sciences of Philadelphia.
Nores, M., \& D. Yzurieta. 1979. Una nueva especie y dos nuevas subespecies de Aves (Passeriformes). Academia Nacional de Ciencias Miscelánea No. 61.
Ohlson, J. I., M. Irestedt, H. B. Filho, P. G. P. Ericson, and J. Fjeldså. 2020. A revised classification of the fluvicoline tyrant flycatchers (Passeriformes, Tyrannidae, Fluvicolinae). Zootaxa 4747:167-176.
Remsen, J. V., Jr., J. I. Areta, E. Bonaccorso, S. Claramunt, A. Jaramillo, J. F. Pacheco, C. Ribas, M. B. Robbins, F. G. Stiles, D. F. Stotz, \& K. J. Zimmer. 2019. A classification of the bird species of South America. American Ornithological Society. http://www.
museum.lsu.edu/ \sim Remsen/SACCBaseline. htm
Ridgely, R. S., \& G. Tudor. 1994. The birds of South America, Vol. 2: the suboscine passerines. University of Texas Press, Austin, Texas, 814 pp.
Ridgway, R. 1905. Descriptions of some new genera of Tyrannidae, Pipridae, and Cotingidae. Proceedings of the Biological Society of Washington 18:207-210.
Sclater, P. L. 1888. Catalogue of the birds in the British Museum (Natural History), Vol. 14.
Smith, S. A., \& B. C. O'Meara. 2012. treePL: Divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28:2689-2690.
Smith, W. J., \& F. Vuilleumier. 1971. Evolutionary relationships of some South American ground tyrants. Bulletin of the Museum of Comparative Zoology 141:179-268.
Tello, J. G., R. G. Moyle, D. J. Marchese, \& J. Cracraft. 2009. Phylogeny and phylogenetic classification of the tyrant flycatchers, cotingas, manakins, and their allies (Aves: Tyrannides). Cladistics 25:429-467.
Traylor, M. A., Jr. 1979. Subfamily Fluvicolinae. Pp. 112-186 in M. A. Traylor Jr., ed., Peters' Check-list of the Birds of the World, Vol. VIII. Museum of Comparative Zoology, Cambridge, Massachusetts, 365 pp.
Zhang, C., E. Sayyari, \& S. Mirarab. 2017. "ASTRAL-III: increased scalability and impacts of contracting low support branches" in Comparative Genomics. RECOMB-CG 2017. Lecture Notes in Computer Science. J. Meidanis, L. Nakleh, Eds. (Springer), vol 10562.
Appendix 1.-Species identification, tissue and voucher information, and geographical locality data for genetic samples used in this study.

Species	Tissue Source	$\begin{aligned} & \hline \text { Tissue } \\ & \text { Number } \end{aligned}$	Voucher	Voucher Number	Locality
Satrapa icterophrys	KU	9896	KU	96944	ARGENTINA: Jujuy, 2 km E Ocloyas
Muscisaxicola fluviatilis	LSUMZ	1188	LSUMZ	101487	BOLIVIA: La Paz, Rio Beni, 20 km by river N Puerto Linares
Muscisaxicola maculirostris	LSUMZ	103850	LSUMZ	114267	PERU: Arequipa, Cerro Coscantire, ca 5 Km E Chala
Muscisaxicola flavinucha	AMNH	12184	AMNH	24336 (skel)	CHILE: Region Metropolitana, Cordillera, 15 km ENE Embalse El Yeso
Muscisaxicola albifrons	LSUMZ	22576	LSUMZ	163132	BOLIVIA: La Paz, Prov. Murillo, Zongo Valley, 7 km by road N summit
Muscisaxicola alpinus	LSUMZ	30037	MECN	FS1917	ECUADOR: Carchi, Tufino
Muscisaxicola griseus	KU	17552	KU	113906	PERU: Junín, above Toldopampa
Muscisaxicola cinereus	AMNH	12179	AMNH	24329 (skel)	CHILE: Region Metropolitana, Cordillera, 2 km ENE Embalse El Yeso
Muscisaxicola rufivertex	LSUMZ	7728	LSUMZ	119203	PERU: Arequipa, ca. 37 road km E Arequipa
Muscisaxicola maclovianus	KU	11679	KU	98363	ARGENTINA: Río Negro, NW El Bolson, Cerro Perito Moreno
Muscisaxicola albilora	AMNH	12171	AMNH	24333 (skel)	CHILE: Region Metropolitana, Cordillera, 2 km ENE Embalse El Yeso
Muscisaxicola capistratus	AMNH	12128	AMNH	23973	ARGENTINA: Río Negro, Norquinco, ca. 5 km E Manuel Choique on Ruta Provincial 6
Muscisaxicola frontalis	AMNH	12167	AMNH	24331 (skel)	CHILE: Region Metropolitana, Cordillera, 2 km ENE Embalse El Yeso
Muscisaxicola juninensis	LSUMZ	1203	LSUMZ	101479	BOLIVIA: La Paz, 4.5 km by road W hydroelectric dam on Zongo Valley road
Lessonia rufa	AMNH	9938	AMNH	23964	ARGENTINA: Río Negro, Bariloche, El Boquete, 700 m .
Lessonia oreas	LSUMZ	61378	LSUMZ	181854	PERU: Huancavelica, 15 km SW Huanchacolpa
Hymenops perspicillatus	USNM	14701	USNM	630410	URUGUAY: Soriano, Cardona, ca 9 km N, at Estancia Santa Emilia
Knipolegus cyanirostris	USNM	14744	USNM	630514	URUGUAY: Tacuarembó, Tacuarembó, ca 45 km N, at Cuchilla Laureles, Estancia La Furiosa
Knipolegus cabanisi	KU	9690	KU	96853	ARGENTINA: Jujuy, E slope Sierra Santa Barbara
Knipolegus signatus	LSUMZ	44150	LSUMZ	174119	PERU: San Martín, ca. 22 km ENE Florida
Knipolegus striaticeps	LSUMZ	38892	LSUMZ	171372	BOLIVIA: Santa Cruz, Prov. Cordillera, 38 km E Abapó
Knipolegus aterrimus	LSUMZ	6578	LSUMZ	124318	BOLIVIA: Santa Cruz, Caballero, 2.5 km N Tambo, Río San Isidro (Río Pulquina) Valley
Knipolegus hudsoni	LSUMZ	18865	LSUMZ	153924	BOLIVIA: Santa Cruz, Cordillera, Estancia Perforación, ca. 130 km E Charagua
Knipolegus lophotes	USNM	14741	USNM	630417	URUGUAY: Tacuarembo, Tacuarembo, ca. 46 km N, at Cuchilla Laureles, Estancia La Furiosa

Appendix 1.-Continued.

Species	Tissue Source	Tissue	Voucher Source	Voucher Number	Locality
Knipolegus nigerrimus	MPEG	DZ-5162	DZUFMG	5162	BRAZIL: Minas Gerais, Alto da Pedra Menina, distrito Pedra Menina, Rio Vermelho
Knipolegus franciscanus	MZUSP	82727	MZUSP	82727	BRAZIL: Minas Gerais, Itacarambi
Knipolegus poecilurus	USNM	10607	USNM	625232	GUYANA: North Side Acari Mountains
Knipolegus orenocensis	LSUMZ	3178	LSUMZ	110630	PERU: Loreto, Isla Ronsco, Río Napo opposite Libertad, 80 km N Iquitos
Knipolegus poecilocercus	AMNH	14176	MPEG	59626	BRAZIL: Amazonas, Estrada Manacapuru, Novo Airao
Polioxolmis rufipennis	KU	19488	KU	113489	PERU: Ayacucho, 3 km S Lirriopata
Cnemarchus erythropygius	LSUMZ	30022	LSUMZ	162118	ECUADOR: Carchi, ca. 6 km W Tufiño
Xolmis velatus	LSUMZ	38195	LSUMZ	169244	BOLIVIA: Santa Cruz, Estancia Cambaras, 38 km SWW San Matias
Xolmis irupero	USNM	14801	USNM	630525	URUGUAY: Colonia, Carmelo, 11.3 km NNE
Xolmis pyrope	AMNH	12144	AMNH	24313 (skel)	CHILE: Region Metropolitana, Chacabuco, ca. 4 km SSW by road from peak of Cerro de El Roble
Xolmis cinereus	USNM	14699	USNM	630409	URUGUAY: Soriano, Cardona, ca. 9 km N , at Estancia Santa Emilia
Xolmis coronatus	KU	11859	KU	98464	ARGENTINA: Río Negro, WSW San Antonio Oeste
Xolmis rubetra	KU	11946	KU	98463	ARGENTINA: Río Negro, WSW San Antonio Oeste
Neoxolmis rufiventris	LSUMZ	77413 (toepad)	LSUMZ	70016	ARGENTINA: Chubut, Chubut
Myiotheretes striaticollis	LSUMZ	38280	LSUMZ	169199	BOLIVIA: Santa Cruz, La Pajcha, 28 km S Samaipata
Myiotheretes fuscorufus	LSUMZ	1837	LSUMZ	106178	PERU: Pasco, Santa Cruz, ca 9 km SSE Oxapampa
Myiotheretes pernix	USNM	387496 (toepad)	USNM	387496	COLOMBIA: Magdalena, Siminchucua, Sierra Nevada de Santa Marta
Myiotheretes fumigatus	IAvH-CT	11345	ICN	36813	COLOMBIA: Cesar, Manaure, Sabana Rubia, Casa 'e Vidrio
Agriornis montanus	LSUMZ	7610	LSUMZ	124280	BOLIVIA: Oruro, Prov. Sajama, 10 km by road E Sajama
Agriornis murinus	KU	11848	KU	98461	ARGENTINA: Río Negro, WSW San Antonio Oeste
Agriornis albicauda	LSUMZ	72330	CORBIDI	GFS226	PERU: Lima, Rio Shuncha, 8 km E Laraos
Agriornis micropterus	AMNH	13502	AMNH	27767	ARGENTINA: Río Negro, Pilcaniyeu, near Neneo Ruca
Agriornis lividus	YPM	83046 (toepad)	YPM	83046	ARGENTINA: Río Negro, El Bolson
Empidonax difficilis	AMNH	15581	AMNH	28484 (skel)	USA: Washington, Thurston County, Yelm
Phelpsia inornata	ICN	38372 (toepad)	ICN	38372	COLOMBIA: Arauca, Municipio Arauca
Suiriri affinis	MZUSP	79714	MZUSP	79714	BRAZIL: Tocatins, ESEC Serra Geral de Tocatins
Sublegatus modestus	LSUMZ	15283	LSUMZ	150869	BOLIVIA: Santa Cruz, Velasco, PreParque Nacional
Sublegatus arenarum	FMNH	394498	FMNH	394498	TRINIDAD \& TOBAGO: Trinidad, Chacachacare
Sublegatus obscurior	USNM	11764	USNM	625645	GUYANA: Upper Essequibo River, Konashen
Colonia colonus	KU	3731	KU	91436	PARAGUAY: Itapúa, San Rafael National Park, San Pedro Mi

Appendix 1.-Continued

Species	Tissue Source	Tissue Number	Voucher Source	Voucher Number	Locality
Arundinicola leucocephala	LSUMZ	38036	LSUMZ	169058	BOLIVIA: Santa Cruz, Estancia Cambaras, 38 km SWW San Matias
Fluvicola nengeta	MPEG	CPE-050	MPEG	70474	BRAZIL: Alagoas, Ibateguara, Usina Serra Grande, Engenho Coimbra
Fluvicola pica	USNM	14542	USNM	627560	GUYANA: Almond Beach, near Mouth of Waini River
Fluvicola albiventer	LSUMZ	38135	LSUMZ	169060	BOLIVIA: Santa Cruz, Estancia Cambaras, 38 km SWW San Matias
Pyrocephalus rubinus	LSUMZ	37157	LSUMZ	165133	USA: Texas, ca. 12 1/2 mi N Bracketville
Muscipipra vetula	AMNH	315092 (toepad)	AMNH	315092	BRAZIL: Palmital (São Francisco)
Gubernetes yetapa	KU	95	KU	88378	PARAGUAY: Concepción, San Luis National Park
Xolmis dominicanus	USNM	14897	USNM	630166	URUGUAY: Rocha, Rocha, 8.8 km NE, at Arroyo de las Conchas
Alectrurus tricolor	KU	3596	KU	91404	PARAGUAY: Itapúa, San Rafael National Park, San Pedro Mi
Alectrurus risora	KU	3430	KU	90263	PARAGUAY: Misiones, San Juan Bautista, 20 km SW

Appendix 2.

Additional phylogenies of the Xolmiini excerpted from those of Harvey et al. (in review). (A) The same ExaML T400F tree from Figure 1, with Fluvicolini added and a single representative of Contopini included. (B) An ExaML tree of concatenated sequences after heavy filtering for missing data (HGAPF). (C) A coalescent-based species tree estimated using ASTRAL-III with minimally filtered sequences (T400F), after removing individuals missing from more than 250 gene trees. ASTRAL does not estimate terminal branch lengths, so these were assigned the median length of the internal branches for visualization purposes. Values at nodes indicate bootstrap support for ExaML trees and local posterior probabilities for the ASTRAL tree. In all trees, asterisks denote complete support (bootstrap support $=100 \%$ or posterior probability $=1.0)$.

A

B

C

[^0]: DOI: 10.2988/20-00002

[^1]: * same classification used by Gill and Donsker (2019).
 ** same classification used by Dickinson and Christidis (2014), Clements et al. (2019), and del Hoyo et al. (2019). *** Neoxolmis salinarum was described as separate from rubetra by Nores and Yzurieta (1979).

